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ABSTRACT

Chen, Chih-Chien Thomas Ph.D., Purdue University, August 1988.
Spectral Feature Design in High Dimensional Multispectral Data. Major
Professor" David A. Landgrebe. School of Electrical Engineering.

The High resolution Imaging Spectrometer (HIRIS) is designed to

acquire images simultaneously in 192 spectral bands in the 0.4-2.5 I_m

wavelength region. It will make possible the collection of essentially continuous

reflectance spectra at a spectral resolution sufficient to extract significantly

enhanced amounts of information from return signals as compared to existing

systems. _By effectively utilizing these signals, direct identification of the

parameters of species can be achieved and their subtle changes can also be

observed and measured_

The advantages of such high dimensional data come at a cost of

increased system and data complexity. For example, since the finer the

spectral resolution, the higher the data rate, it becomes impractical to design

the sensor to be operated continuously. Even operating HIRIS in a request only

mode, its 512 Mbps raw data rate still constitutes a serious communication

challenge. In order to solve this problem, it is essential to find new ways to

preprocess the data which reduce the data rate while at the same time

maintaining the information content of the high dimensional signal produced.
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In this thesis, four spectral feature design techniques are developed from

the Weighted Karhunen-Loeve Transforms. They are ;-_non-overlapping band

feature selection algorithm, overlapping band feature selection algorithm,

Walsh function approach, and infinite clipped optimal function approach. From

a simplicity and effectiveness point of view, the infinite clipped optimal function

, approach is chosen since the features are easiest to find and their classification

performance is the best. This technique approximates the spectral structure of

the optimal features via infinite clipping and results in transform coefficients

which are either +1, -1 or 0. Therefore the necessary processing can be easily

implemented on-board the spacecraft by using a set of programmable adders

that operate on the grouping instructions received from the ground station.

After the preprocessed data has been received at the ground station,

canonical analysis is further used to find the best set of features under the

criterion that maximal class separability is achieved.

In this research, both 100 dimensional vegetation data and 200

dimensional soil data are' used to test the spectral feature design system. It will

'_be shown that the infinite clipped versions of the first 16 optimal features

derived from the Weighted Karhunen-Loeve Transform have excellent

classification performance. Further signal processing by canonical analysis

increases the compression ratio and retains the classification accuracy. The

overall probability of correct classification is over 90% while providing for a

reduced downlink data rate by a factor of 10.



CHAPTER I

INTRODUCTION

1.1 Research Objective

Due to the recent advance in optics and solid state technology, it is now

possible to build sensors with much finer spectral resolution. This will provide

the opportunity for collecting data for a much enriched information source. For

example, the future High resolution Imaging Spectrometer (HIRIS) is planned to

have as many as 192 spectral bands [1]. Since the signal dimensionality is

tremendously increased, current techniques for analyzing multispectral data

would not be adequate. In order to effectively utilize the information collected

and achieve these benefits from the high dimensional measurements, it is

essential to find new ways to process the data which reduce the data rate while

at the same time maintaining the information content of the signals produced.

The fundamental objective of this research is to develop an objective and

practical spectral feature design technique for high dimensional multispectral

data.

One possible approach that might be used to accomplish the design

objective is to tailor the spectral features to the particular analysis problem at

hand. Features might be made up by grouping (i.e. summing) the narrow band

response functions in particular spectral regions on board the spacecraft, based
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upon the particular classes of ground cover parameters that are to be identified.

The main advantage of this approach is the possibility of local optimality.

Instead of finding optimal features with respect to all possible scenes (global

optimal), a more practical and adaptive approach is introduced for each

individual situation. The maximal attainable performance of local optimal

features is indeed better and at least not worse, than that of global optimal ones.

The problem then reduces to finding a means for deciding how to choose these

band groupings effectively for each different analysis situation such that the

data rate is greatly reduced while the classification performance is preserved or

increased.

1.2 Previous Approaches

There have been basically four approaches to this feature design

problem. They are (1) in-depth studies of physical considerations, (2) empirical

methods, (3) simulation methods, and (4) analytical approaches.

Important physical considerations which have been investigated are

atmospheric effects and the interaction of light with various cover types. By

evaluating the transmittance of the atmosphere over the spectral interval of

interest [2,3], one can eliminate certain portions of the interval, since little or no

information content is contained in those regions.

The interaction of electromagnetic radiation with plant leaves [4], soils [5]

and waters [6] has been studied in the past to find the most effective spectral

features for discrimination. A typical procedure for these studies is to take
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measurements with a spectroradiometer on restricted information classes over

the entire spectrum. Then the average of the spectral responses is found and

the subsequent conclusion is drawn from the average. The basic disadvantage

of this approach is that only the mean value is considered. The potential

information in the variance and covariance is neglected and lost.

The second method is empirical in that a scanner with many spectral

bands is constructed, and the selection of the bands is done experimentally.

The studies have been done with agriculture cover types [7], forest covers [8],

and geological applications [9]. The main advantage of the empirical method is

the retaining of the information in the variations about the mean. The

correlation is considered in the feature design process. However, the spectral

sampling is crude and incomplete for representing the whole spectrum.

Simulation methods have been developed [10] to generate typical

spectra according to a scene model. These artificial spectral response

functions are then used to choose the best set of features. However, due to the

complexity of the scene and the interrelations of various parameters [11], an

accurate enough model of the scene is not available yet up to present.

The recent advances in optical and solid state technologies make it

possible to build high dimensional multispectral sensors such as HIRIS, with a

spectral resolution of 10 nm and a spatial resolution of 30m [1]. In order to

effectively utilize, including acquire, archive, retrieve, transmit and analyze the

data collected, analytical feature design approaches are sought because of

their objective and machine-oriented natures. Early works of this approach are

found in Wiswell's and Wiersma's Ph.D dissertations. Wiswell [12] studied the
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feasibility of using the maximal average mutual information [13] as a criterion to

evaluate the spectral features. The best set of features are chosen so as to

oblait_ tile minitllal r_tltlcltorl lrl uJluerlditlty about lieu scene alter tlbe

observation is made. The research showed that average mutual information is

a useful concept to construct the feature sets. However the relationship

between average mutual information and global performance criterion such as

classification accuracy was not demonstrated. Moreover, the technique was

only applied to much lower dimensional signals (about 10); the feasibility for

high dimensional signals in the range of one or two hundred spectral bands

was not shown.

Wiersma and Landgrebe [14,15] proposed the use of minimum mean

square representation error criterion for feature design. It was shown that an

analytical feature design procedure can be established by applying a weighted

Karhunen-Loeve Transform [16,17,18] to the observation space in which the

eigenvectors of the transform are the optimal (though impractically complex)
+

spectral features. The dimensionality in this research was 100 which was much

higher than that in Wiswell's work. A manual band feature selection was

suggested according to the relative importance of spectral regions as indicated

by the eigenfunctions. The concept of spectral dominancy was introduced

although the final stages of the feature design process were manually

implemented. This appears to be tedious and impractical when the number of

cover types is greatly increased. Another drawback in Wiersma's work lies

basically in the subjective nature of the manual feature design process.
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1.3 Current Investigation

The research results presented here will adopt some procedures to

extend Wiersma's work in such a way that objective, machine implemented

spectral feature design schemes become feasible. The idea of local optimality

is introduced in this thesis. Instead of finding the features that are optimal with

respect to all possible scenes (global optimal), it is now proposed to tailor the

spectral features to the specific user problem at hand. The maximally attainable

performance can then be increased. The new concept of structure similarity

and its realization are discussed in this dissertation. This makes the feature

design problem more general in the sense that overlapping features become

practical and easily implemented.

In this research four methods are developed which in effect lead to

suboptimal but now practical versions of the optimal features. These derived

spectral features were obtained by combining groups of adjacent spectral

samples into bands, usually one or more hundred nanometers wide, that are

specially tailored to the analysis task at hand. These features could be

implemented by utilizing simple programmable adders at the sensor output as

shown in Figure 1.1
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ON-BOARD FEATURE FORMATION SYSTEM

SCHEMATIC DIAGRAM

i Spaceborne

Multispectral

Sensor

)_ IX X I Feature Outout
,!11 2 "" IN

_1. Programmable }__ N_-i Adder#1 Yl=__,_li,1 x'

_1 IX2 .. XlN

Spaceb°rne I _1. Procjrammable N

Grouping N-"_ Adier #2 _- Y2 = i=_1 li'2 xi

Instruction

R__e_ceiv__er

X. 1 ,X,2 . . X N
_'_ 1 I I I

T N--I'"2__. Programmable t_- NAdder #Nf YNf= _ li,NfXi

I GrOund StatiOn [0_
Grouping Instruction +1 i-i= 1,2,... N

Transmitter where ii, j = lj = 1,2, Ikt1

N = no. of Spectral Samples collected

I_ = no. of Spectral Features desired

Figure 1.1 Realization of Spectral Feature Design
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In Figure 1.1, N is the signal dimensionality from the sensor output, and

Nf is the number of spectral features used. The programmable adders on board

the spacecraft act according to the received grouping instruction from the

ground station, either adding (+1), subtracting (-1) or omitting (0) bands for

each spectral function. The resulting features are then transmitted down to the

ground station for further processing.

The first method is based on the dominancy property of the spectral

bands. A manually subjective selection process was used previously in

Wiersma's work [14,15]. In this research, an objective and machine oriented

process is developed. The spectral band edges are found by applying infinite

clipping [21] to the average of the first few eigenvectors associated with the

largest eigenvalues. This technique is referred to as a non-overlapping (N.O.L.)

band feature selection algorithm due to the fact that designed features are not

overlapping.

The second approach utilizes a transformation from the optimal feature

space to a new space based upon Walsh Functions (W.F.) [19,20]. These

functions have the attractive features of being everywhere equal to either +1 or -

1, and being ordered by the number of axis crossings. Thus the transformation

can be implemented by either adding or subtracting bands, and the various

functions will correspond to spectral ranges of a variety of widths.

The third scheme applies infinite clipping (I.C.) [21] to the original optimal

functions derived from the weighted K-L transform. The resulting features are

the infinite clipped optimal functions. In this thesis, the experiment concludes
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that this scheme is the most promising technique in the sense of best

classification performance under the same compression requirement.

The fourth approach extracts the zero crossing information from each

optimal function and chooses those spectrum intervals that are in between two

zero crossings as band features. Since the band features derived from each

optimal function in this way might be linearly dependent [22], special precaution

must be taken to get rid of linearly dependent bands. This method is called

overlapping (O.L.) band feature selection algorithm because the bands derived

by this scheme are overlapping.

1.4 Preliminary Test of the On-Board Preprocessing System

From a simplicity and effectiveness point of view, not all the four

developed approaches are ideal for data preprocessJng. Six preliminary test

data sets are used to select the best technique. The goal is to find the most

effective scheme under the simplicity requirement. Of the six sets of high

spectral resolution field measurement data, three were taken over Williams

County, North Dakota, each with 3 information classes: spring wheat, summer

fallow and natural pasture. The other three were taken over Finney County,

Kansas, again with 3 information classes each: winter wheat, summer fallow,

and grain sorghum or other crops. For convenience, these data sets are

referred to with a letter/number designator as shown in Table 1.1.

These data were taken by the Field Spectrometer System (FSS) [23]

mounted in a helicopter. The spectral resolution was 0.02 I_m for the interval

from 0.4 #m to 2.4 #m.
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Table 1.1 Data Set Designation for Preliminary Test

Location Date Designation #of Observ.
Kansas 9/28/76 K1 832
Kansas 5/03/77 K2 1551
Kansas 6/06/77 K3 1477
N. Dakota 5/08/77 N 1 1265
N. Dakota 6/29/77 N2 1239
N. Dakota 8/04/77 N3 1444

For each of the six data sets, the collection of the spectral sample

functions forms the ensemble of a random process. The mean vector and the

covariance matrix of this ensemble are first estimated. The estimate of the

covariance matrix is used to solve the generalized Karhunen-Loeve equation

which results in the eigenvalues and the eigenvectors of the transform. Figure

1.2 shows the magnitude of the first 12 eigenvectors associated with the largest

eigenvalues for the data set K2 [15]. They will be used to explain the feature

design schemes in chapter II1. The spectral interval is 0.02 t_m as stated

previously. Therefore the dimensionality used in these preliminary tests is 100.

From this preliminary test,

transform is the simplest and

preprocessing.

it is concluded that the infinite clipped optimal

most effective method for on-board data
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1.5 Outline of the Thesis

In chapter 2, a theoretical review of the weighted K-L transform is given.

Two important properties, minimum mean square truncation error and

uncorrelated transformed coefficients are proved for this generalized transform.

Chapter 3 discusses in detail the four schemes developed to design the

spectral features in high dimensional multispectral data. Two of them, non-

overlapping band feature selection algorithm and overlapping band feature

selection algorithm, are developed from the dominancy concept in

eigenfunctions; and the other two, Walsh function approach and infinite clipped

optimal function approach are derived from the idea of structure similarity

between two sets of functions. Furthermore, a comparison among these data

preprocessing schemes is included in this chapter. From the simplicity and

effectiveness point of view, it is found that the infinite clipped optimal function

approach is the best technique. After the preprocessed data would be received

at the ground station, canonical analysis would be applied to the infinite

clipped optimal transformed data to obtain maximal class separability.

Chapter 4 shows the final results of this research. Both the vegetation

data and the soil data are included in this chapter. The Hughes phenomenon is

also discussed.

Chapter 5 summaries the final conclusions and gives recommendations

for the future work.

An IBM 3083 Macro file used to run the spectral feature design system and the

source code of the system are given in the appendices.
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CHAPTER II

KARHUNEN-LOEVE TRANSFORM

The Karhunen-Loeve (KL) expansion [44] was developed to represent

random processes. It maps the continuous parameter random process into a

sequence of random variables [24]. The expansion generates a set of

deterministic orthonormal basis functions. This set has a unique error-

minimizing property and uncorrelated transformed coefficients. These

properties make it the optimal coordinate system for many feature design

problems.

This transform can be generalized [25,26] to include a weighting function

to account for certain types of a priori knowledge of the parameter set, and its

proper use may have an important impact on the extraction of useful

information [15]. Thus using the weighted form of K-L transform may result in

more practical and realizable feature design.

In the following we will show that minimum mean square truncation error

(MMSE) and uncorrelated coefficients properties, which are directly related to

this research, also hold for the generalized K-L transform. The MMSE property

ensures that the eigenfunctions associated with the largest eigenvalues derived

from the weighted K-L transform are the optimal basis functions in the sense of

signal representation. Uncorrelated coefficients property guarantees that the

transformed coordinates are independent under Gaussian assumption.
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2.1 Minimum Mean Square Truncation Error

Let X(_,) be a sample function of a random process. Assume that the

random process is Continuous in probability and almost every sample function

of the random process has finite norm in L2(A) space [27]. Then X(_.) can be

represented by an expansion of the form [24]

o<)

X(;L) = Z Yi d_i(_')
i,,1

(2.1)

where the functions {d_i (X,)} are deterministic and the expansion coefficients

{ Yi } are random variables.

Define a weighting function W(X) with real finite positive values. Without

loss of generality, the set {d_i (_.)} will be taken to be orthonormal with respect

to W(X). From the generalized inner product [27] which defines the metric in

L2(A) space, we have

and

( d_i' _j) w = J _i (_') W (X) ¢_J(_') dk = I 0 if i¢= j (2.2)

t"

i l l if i=j

Yi = (¢_i ' X)W = f ¢_i(k) W(;L)X(k)dX (2.3)
A

If the set {¢_i(X,)} is not orthonormal to begin with, it can be

orthonormalized by the Gram-Schmidt procedure [57]. That such sets exists in

L2(A) space has been demonstrated by the construction of sets such as
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complex sinusoids, Legendre polymonials, Chebyshev polymonials, Laguerre

functions, Walsh functions and others.

Therefore Y = { Yl, Y2....... } is simply an orthonormal transformation of

the random function X(3.), and is itself a random vector. Each component of Y

is a feature which contributes to representing the observed sample function

X(X).

Furthermore, we are going to choose a set {¢)i(X)} which is complete in

L2(A,) space. That is, if we define the sequence

Cn (3.) = _ Yi (I)i(3. )
i=1

(2.4)

then,

n

lim{ j[ x(x). ,_,y_o _(x)] 2w(x)dX}
A i=1

n __,oo

= 0 (2.5)

That the sequence

denoted by

c n (3.) converges to X(3.) in the mean square sense, is

X(3.) = I.i.m. cn (3.) (2.6)
n__.)oo

This convergence guarantees that the series can be made arbitrarily

close to X(3.) by increasing n in the expansion.
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The problem of designing the optimal sensor then becomes that of

selecting the set of complete orthonormal (CON) basis functions { Oi(k ) } such

that the series representation will be optimal with respect to the minimum mean

square error criterion. In the stochastic environment, this representation error is

taken over the ensemble of the random process. Hence, we need :

oo

E { j'[x(x) - E Y i Oi(k)] 2w(k) dk } = 0 (2.7)
A i,=1

Another desirable property is that the convergence be rapid in the first

few terms, that is, each additional term used in the series expansion decreases

the representation error by a maximum amount. This property is called energy

packing.

In the real applications, however, it is impractical to transmit an infinite

or even a very large number of channels to the ground. Therefore only a finite

number of terms in the expansion would be used. Let n be a finite number such

that the representation error by using the first n terms in the expansion is less

than T, the maximal acceptable error. Then we require the selected orthonormal

basis functions { Oi(k) } to be complete in a finite n dimensional subspace of

L2(A). That is, for any T > 0, there is an no such that

n

E{J'[x(x) - E yi O i(;L)]2W(k)dZ} < T ; n>n o (2.8)
A i=1

for any X(X) defined in the L2(A) space.
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This completeness property in finite dimensional space can guarantee

that if we use the n dimensional subspace of L2(A), spanned by the first n

elements of a complete orthonormal set { ¢_i(_.) }, for the representation of an

arbitrary signal, then the norm of the error can be made arbitrarily small by

choosing n sufficiently large.

The objective then is to find the a finite set of orthonormal basis functions

that have the above minimum representation error and energy packing

properties. In the following, we are going to show that the eigenfunctions

derived from the Weighted Karhunen-Loeve transform are just the desired

optimal basis functions.

In the above finite n dimensional subspace of L2(A), suppose only m

terms in the expansion will be used to estimate the observed X(_.), then the

estimate X(3.) can be expressed in the following form

m n

'_ (_") = _ Y i¢_, (_) + _-, bi _i (_') (2.9)
i= 1 i-m+l

The constants { b i} are preselected. The objective is to find the basis

functions and the constants { b _ } in such a way that the minimum mean square

error can be obtained.

Since we do not use all of the basis functions, the representation error

due to truncation is then equal to

n

AX(3.) = X(3.) - ,_(3.) =_,_ (Yi" bi)_i (3") (2.10)
i=m+l
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We define the weighted mean square error to be

WMSE=E((AX,AX)w)=
i = m+l j - m+l

- bj)J'_i(X)W(X)@j(k)dk )
A

(2.11)

Since the basis functions are orthonormal, Eq (2.11) reduces to

WMSE = Z E (yi " bi ) 2
i = m+l

(2.12)

The mean square error is minimized when

ohE ( Yi - bi )2

= -2E(Yi-bi)= 0Ob.
!

(2.13)

That is, the preselected constant bi must be equal to the expected value

of the transform component E(yi).

We are left to show that when (t)i (;L) is a weighted K-L basis, then the

weighted mean square error is minimized. We need to minimize

n n

WMS E='_" E(Yi-E(Yi))2=_., fJ"_i(;L)W (X)Kx(;L, u)W(u)_i(u)d udX
i=m+l i=m+l AA

(2.14)

where K x (_,,u) is the covariance function of the random process.

Using the orthonormality constraint, we can write the mean square error

as the quadratic functional [19] of (t)i (X)
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n

i=m+l A A

_i(X) W(Z,) Kx(;Z, u)W(u) _i (u) du dX,

n

- _ _'_{.r *_(_.)w(x),i,p,)d_.- 1 } (2.15)
i=m+l A

Minimizing with respect to _i yields [19]

V_.(WMSE) = 2 .r w (X)Kx(;L,u)W(u)_i(u)du - 2X,iW(_,)_i(;L) = 0 (2.16)
I A

The set { _.i } thus turns out to be the eigenvalues of the covariance

function of the observed X(X), and the basis functions satisfy the weighted K-L

equation

J" Kx(X,u)W(u).i(u)du = Xi .i(;L) i = 1,2, ..., n (2.17)
A

From equations 2.14 and 2.17, we have

or

n

WMSE = _ S(bi(_.)W(X)[Xi*i (_.)]d;_
i=m+l A

n

WMSE = X Xi
i = m+l

(2.18)

(2.19)
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If we rank the optimal functions according to the magnitudes of their

associated eigenvalues from the largest to the smallest, then using the first few

optimal functions in the series representation will results in the desired

weighted minimum mean square error. Furthermore, the energy packing

property will also be satisfied since the mean square error reduction for using

each additional term in the expansion will be maximized.

2.2 Uncorrelated Transformed Coefficients

The generalized K-L transform results in uncorrelated coefficients.

property can be derived as follows. Since

where

Y={ Yl' Y2...... ,Yn }

This

(2.20)

r ¢_i (k) w(x) x(x,) dX.yi
m/

^ (2.21)

and the covariance between Yi and yj is defined as

oi, j = E(y i E(Yi))(y j-E(yj))
(2.22)

Using Eq.(2.21), Eq.(2.22) becomes
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(5i, j = J'j" (_i (_)W(_L)Kx(_"M)W(u)(_)j (u) du dX
AA

(2.23)

From the Weighted Karhunen-Loeve Equation derived in Eq.(2.17), we get

j,, { X. ifi =jO'i. j = _i (_L) W(_,) [ _j (D i (_L) ] dX = O' if i # j
A

(2.24)

Therefore the transformed coefficients are uncorrelated. If the underlying

distribution of the random process is Gaussian, the coefficients are then

independent.
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CHAPTER III

SPECTRAL FEATURE DESIGN

From the discussion in chapter 2, we know the weighted K-L transform

preserves the minimum weighted mean square error (MWMSE) and ordered

uncorrelated coefficients properties, in fact, the K-L transform is a special case

of its generalized form with unity weight matrix. The fundamentals in remote

sensing indicate [14,15] that the eigenfunctions derived in the K-L transform

with unity weight matrix can not be used satisfactorily for feature design. The

reason for this is basically the fact that the reflectance around the two water

absorption bands has high variance and thus tends to dominate the formation of

the basis functions. Therefore the spectral response in these two regions is not

information-bearing. Indeed, the spectral radiance emanates mostly from the

atmosphere and must be considered as noise. Understanding this important a

priori knowledge about the scene, we can incorporate a weighting function into

the calculation process to eliminate the effect of noise. The generalized K-L

transform is then the solution. The resulting optimal functions can be used to

transform the original observation space into a new feature space.

In this chapter, four spectral feature design techniques will be presented

first. Using simplicity and effectiveness as criteria, the most promising

technique is then selected from these four schemes for our final feature design

system. The four techniques developed in the course of this research are
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.

2.

3.

4.

Non-overlapping band feature selection algorithm,

Walsh function approach,

Infinite clipped optimal function approach, and

Overlapping band feature selection algorithm.

The non-overlapping and overlapping band feature selection algorithms

are derived from the shape of the optimal features. The Walsh function

approach and the infinite clipped optimal function approach are developed from

the structure of the optimal features.

After performing the generalized K-L transformation to the data [15],

where a weight function is incorporated into the transform to avoid portions of

the spectrum where the atmosphere is known to be opaque, the eigenfunctions

can be found. These eigenfunctions serve as optimal features that linearly

transform the original measurement space to the new space in a minimum

mean square error sense [18]. However, because of the inherently complex

nature of the optimal functions, an easy and fast implementation directly using

them to process the tremendous amount of information collected must be found.

Therefore, more realistic features are sought in order to achieve this

requirement. More realistic features can be found by carefully studying the

shapes of the first few eigenfunctions. The importance of a wavelength region

for the purpose of accurately representing the ensemble of functions is

indicated by the magnitude of the eigenfunctions in that region. It is

hypothesized that the importance of a region in an ensemble-representational

sense is positively correlated with (though not identical to) its importance with

respect to classification accuracy. Referring to Figure 1.2, it is observed that

each eigenfunction thus points to the more important regions.
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For instance, the magnitude of the first eigenfunction indicates that there

are 3 important regions over the entire spectrum: 0.4-1.28 p.m, 1.48-1.78 _m

and 1.98-2.4 p.m, the magnitude of the second eigenfunction indicates that

important regions are approximately 0.4-0.66 _m, 0.66-1.28 I_m, 1.48-1.78 I_m

and 1.98-2.4 _m, etc. From the fact that the magnitude of the first eigenfunction

is very similar to the soil response function, and the magnitude of the second

eigenfunction is similar to the vegetation curve, it is observed that the dominant

portion of the ensemble, i.e. summer fallow, winter wheat and unknown crops

for this data set K2, can be shown in the first few eigenfunctions derived from

the weighted K-L transform. Therefore, it is desired to choose the regions with

larger magnitude in the eigenfunctions, especially from those with largest

eigenvalues, as sensor bands since these regions contribute most to reduction

of representation error as well as increasing of classification performance.

However, such a subjective process is difficult to carry out objectively due

to the spectral detail in the eigenfunctions and the number of eigenfunctions to

be examined. A machine implemented band selection algorithm based on this

dominancy concept in the eigenfunctions is thus sought.

3.1 Non-Overlapping Band Feature Selection Algorithm

Infinite clipping is a procedure used to transform the signal into its signed

form [21]. There is evidence in various circumstances that the axis crossings of

a signal carry a substantial portion of the information that the signal carries. For

example, in the field of speech recognition [28-33], the infinite clipping

procedure can been used to extract zero crossing information and perform
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speech recovery very successfully. For example, Ewing and Taylor [29] showed

that zero-crosslng information from a speech signal is a feasible way for

computer speech recognition; and Niederjohn, et al [30] showed that the set of

zero-crossings of a speech waveform represents a nearly minimal set of

informational attributes in the sense that any reordering or averaging of the

zero-crossing intervals has a detrimental effect upon speech intelligibility.

Some other examples of using zero-crossing information of a signal can

also be found in the fields of radar target detection [51-52], biomedical

engineering [53], communications [54-55] and image processing [56]. Rainal

[52] described a zero-crossing principle for detecting weak narrow-band signals

immersed in Gaussian noise. An application of the zero-crossing principle to

the detection problem of a stationary radar target in clutter was discussed.

Masuda, et al [53] demonstrated in a biomedical context that the muscle fiber

conduction velocity, which is known to be an index of the degree of muscle

fatigue or muscle disease, can be accurately measured by using zero-crossing

information from a surface electromyogram signal. In conventional

communications, Voelcker [54] showed that an angle-modulated signal can be

demodulated given only its zero-crossings; Wiley, et al [55] proposed an

iterative demodulation procedure for very wide-band FM by use of a zero-

crossing discriminator. Haralick [56] showed that the zero-crossing of second

directional derivatives within the pixel's area can be used to detect the step

edges in the image.

Thus, one possible approach to finding the desired procedure would be

to apply infinite clipping to extract the zero crossing information. The input to

this algorithm will be the average of the first few eigenfunctions. The output of
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this algorithm is to be the band edges showing how the bands should be

chosen. We will refer to this procedure as the non-overlapping (N.O.L.) band

feature selection algorithm. Figure 3.1 shows the average of the first 12

eigenfunctions. After thresholding, the data of Figure 3.1 become as in Figure

3.2 where +1 represents the positive portions of Figure 3.1, -1 represents the

negative portions, and 0 represents the water absorption bands centered at 1.4

and 1.9 l_m respectively. It should be noted that there is no response over the

above water absorption bands due to the use of the weight function in the K-L

transform, which has been set 1.0 over the entire spectrum and a very small

positive value in the water bands.

The band edges are found as follows: whenever a transition in sign or

magnitude occurs in Figure 3.2, the wavelength of the associated band is

recorded. Table 3.1 shows the results after transition operation. The band

edges in Table 3.1 can be used to set up the suboptimal basis functions for data

compression [ refer to the 2nd column in Table 3.6 ].

Table 3.1. Band Edges Obtained by Infinite Clipping of the Average
of the First 12 Eigenvectors for Data Set K2

Band

1
2
3
4
5
6
7
8
9

10
11

0.40 - 0.68
0.68
0.90
0.92
0.94
1.00
1.06
1.12
1.26
1.48
1.98

- 0.90
- 0.92
- 0.94
- 1.00
- 1.06
- 1.12
- 1.26
- 1.28
- 1.78
- 2.40
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Figure 3.1
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3.2 Walsh Function Approach

By carefully viewing the structure of the eigenfunctions in Figures 1.2,

one may also observed that the eigenfunctions corresponding to the larger

eigenvalues tend to have coarser structure than those with smaller eigenvalues.

A similar effect exists in the Walsh functions indexed by the number of zero-

crossings. The higher the index of the Walsh function, the finer the structure of

the function [19,20]. The first 10 Walsh functions indexed by the number of axis

crossings are shown in Figure 3.3, where curve 0 is the first Walsh function with

no axis crossing, curve 1 is the second Walsh function with one axis crossing,

etc.

The inner product of the two functions may be thought of as a

mathematical measure of similarity of the two functions. The absolute values of

the inner products of the first 16 eigenfunctions with the first 64 Walsh functions

are calculated. Table 3.2 shows part of the results. Absolute values of the inner

product are used since the polarity is not significant here. Table 3.3 shows the

similarity relation between these two sets of functions. For example, the number

"1" in the (1,1) matrix position indicates that the first eigenfunction is more

similar to the first Walsh function than to any other 63 Walsh functions since the

value 0.84 in Table 3.2 is the largest in the" first" column. The numbers "2", "3"

and "4" in the (1,2), (1,3) and (1,4) matrix positions indicate that the 2nd, 3rd

and 4th eigenfunctions mostly look like the 2nd, 3rd and 4th Walsh functions

respectively in the sense of signal structure similarity. Therefore, the structure

of the first 4 eigenfunctions can be approximated by that of the first 4 Walsh

functions. By observing the first two rows of Table 3.3, it can be concluded that

the first 16 eigenfunctions and the first 16 Walsh functions have approximately
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the same structure. The structure in the eigenfunctions is related to the axis

crossings in the signals. The coarser the structure, the less the number of axis

crossings; and vice versa. These axis crossings are hypothesized to contain

important information that can be used for classification. Therefore, it is

feasible to use the first few Walsh functions as spectral features in high

dimensional multispectral data.
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Figure 3,3 First 10 Walsh Functions Indexed
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Table 3.2

Optimal#
Walsh#

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
ii I ii i

Absolute Values of Inner Products Between

Optimal Functions and Walsh Functions

,,,, ,

2 3 4 5 6 7
i i i 1 ,

III iii I i ii iiii ii I I

8
i

0.84 0.21 0.21 0.09 0.01 0.01 0.00 0.00
0.21 0.68 0.42 0.12 0.24 0.01 0.13 0.03
0.04 0.23 0.66 0.05 0.43 0.02 0.17 0.17
0.09 0.03 0.09 0.78 0.12 0.01 0.03 0.09
0.04 0.39 0.13 0.05 0.40 0.03 0.13 0.17
0.11 0.32 0.09 0.01 0.28 0.14 0.33 0.25
0.06 0.11 0.13 0.09 0.20 0.35 0.23 0.10
0.03 0.10 0.15 0.06 0.03 0.03 0.52 0.36
0.25 0.07 0.03 0.05 0.29 0.14 0.16 0.28
O.12 0.05 0.26 0.24 0.27 0.02 0.20 O.14
0.13 0.15 0.21 0.06 0.15 0.08 0.18 0.15
0.03 0.15 0.05 0.32 0.09 0.07 0.21 0.02
0.02 O.18 0.00 0.04 0.08 0.00 0.09 0.03
0.15 0.10 0.04 0.15 0.00 0.07 0.09 0.10
0.08 0.03 0.09 0.16 0.09 0.15 0.01 0.14
0.03 0.04 0.03 0.04 0.20 0.18 0.05 0.10

Walsh#
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0.01 0.00 0.01 0.01 0.03 0.04 0.01 0.05
0.00 0.03 0.08 0.08 0.07 0.04 0.02 0.06
0.00 0.04 0.06 0.00 0.07 0.02 0.06 0.09
0.12 0.18 0.18 0.14 0.06 0.04 0.02 0.00
0.13 0.21 0.02 0.09 0.04 0.14 0.14 0.19
0.09 0.24 0.03 0.07 0.29 0.02 0.16 0.16
0.07 0.09 0.05 0.10 0.02 0.39 0.23 0.03
0.03 0.05 0.10 0.03 0.06 0.15 0.15 0.13
0.22 0.06 0.08 0.29 0.21 0.19 0.13 0.07
0.07 0.10 0.32 0.00 0.06 0.27 0.12 0.17
0.14 0.16 0.08 0.10 0.14 0.07 0.01 0.40
0.21 0.00 0.05 0.23 0.08 0.14 0.11 0.16
0.01 0.11 0.33 0.19 0.13 0.08 0.00 0.09
0.11 0.00 0.24 0.12 0.08 0.10 0.07 0.08

0.27 0.06 0.06 0.05 0.18 0.07 0.05 0.04
0.12 0.24 0.19 0.01 0.01 0.07 0.02 0.05
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Table 3.3 Similarity Relation Between Optimal
Functions and Walsh Functions

'Optimal# . i 2 3 4 5 6 7 8
n

Rank
1
2
3
4
5
6
7
8
9

10
11
12
13
!4
15
16

I ii I

Walsh#
1 2 3 4 3 7 8 8

57 5 2 12 5 36 6 9
9 6 59 60 9 16 7 6
2 3 10 10 6 40 28 22

14 1 11 15 10 35 12 18
11 58 1 14 2 19 10 24
10 13 58 2 7 23 25 64
33 11 8 52 16 15 11 3

6 12 27 29 21 63 3 5
58 59 7 7 59 9 24 50
47 7 5 35 58 32 9 11

4 42 50 1 11 6 64 19
25 8 35 50 26 20 30 25
15 14 4 17 28 54 2 36
42 25 15 43 45 47 19 10
18 18 26 57 49 57 5 17

optlmal#
Rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

9 10 11 12 13 14 15 16

Walsh# " "
i I lu •

15 17 13 9 6 7 20 11
22 16 10 22 23 10 24 19

9 6 14 12 19 21 18 20
12 21 26 62 9 9 7 5
18 5 58 54 28 33 19 36
50 19 16 52 15 8 52 27
17 53 49 13 34 5 6 50
49 20 38 47 29 12 8 51
54 4 4 43 38 49 33 10
26 51 55 20 11 42 5 6
11 43 23 34 13 31 9 12
36 42 44 18 25 29 30 22

5 11 17 50 55 28 10 34
29 18 31 61 52 18 50 52
16 61 37 30 62 14 12 8
35 49 63 33 44 46 44 18
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3.3 Infinite Clipped Optimal Function Approach

If one studies the Walsh functions more carefully, it is found that although

the Walsh functions approximate the optimal functions in the sense of structure

similarity, they do distort some of the spectral spacing information in the optimal

functions. The axis crossing separation in the optimal functions is a relatively

irregular pattern, while it is quite regular in the Walsh functions.

One way that can be applied to avoid this information loss is to use the

infinite clipped optimal functions as spectral features. The infinite clipped

optimal function approach preserves the zero-crossing information in the

optimal functions which is hypothesized to contain important spectral

information that can be used for classification.

Furthermore, the Walsh function approach is less flexible than the infinite

clipped optimal function approach since the spectral features using the Walsh

functions tend to be fixed for all analysis situations; while, on the other hand, the

infinite clipped optimal function approach does give some degree of

adaptability. Figure 3.4 shows the infinite clipping versions of the first 6

eigenfunctions for data set K2.

The infinite clipped optimal functions, derived from the signs of the

optimal functions, are then used as spectral features (i.e., basis functions) to

linearly transform the high dimensional multispectral data to the ground station

for further processing.
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3.4 Overlapping Band Feature Selection Algorithm

The overlapping band feature selection algorithm originates from the

inherent overlapping property of the optimal functions. This property suggests

that overlapping bands might be even more powerful for spectral feature

design. The idea of this algorithm is to find the locations of the important

spectral bands without imposing the additional restriction that the bands be

non-overlapping. The basic procedures used are very similar to those in the

non-overlapping band feature selection algorithm. In the non-overlapping band

feature selection algorithm, the infinite clipping procedure is applied to the

average of the first few eigenfunctions in order to extract the information of the

important spectral bands; while in this overlapping case, the infinite clipping

procedure is applied to each individual eigenfunction.

The first step is to find the band edges of each individual eigenfunction.

Table 3.4 shows part of the results for data set K2. In Table 3.4, comparing to

Figure 1.2, it is found that there are 3 important bands for the first eigenfunction,

4 for the 2nd one, 8 for the 3rd one, etc.

It should be noted that the band features derived in this way are not all

linearly independent. For example, the first and second band feature from the

second eigenfunction, that is, 0.40-0.66 I_m and 0.66-1.28 I_m, are linearly

dependent on the first band feature from the first eigenfunction ( 0.40-1.28 _m ).

Another example is the identical band features ( 1.48-1.78 and 1.98-2.40 pm)

derived from the first 5 eigenfunctions. Indeed, these repeated bands and the

bands which are linearly dependent on the previously selected bands can not
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be used as spectral features since linearly dependent features will result in

singular class covariance matrix.

Table 3.4 Linearly Dependent Bands Found by Overlapping
Band Feature Selection Algorithm for Data Set K2

,, , ,, ,

IEigenVector#
| I

BAND
1
2
3
4
5
6
7
8

1 2 3
,i

I

0.40 - 1.28 0.40 - 0.66
1.48 - 1.78 0.66- 1.28
1.98 - 2.40 1.48 - 1.78

1.98 - 2.40

0.40 - 0.94
0.94- 1.00
1.00 - 1.02
1.02 - 1.12
1.12- 1.16
1.16- 1.28
1.48- 1.78
1.98 - 2.40

r i

[EigenVector#
...... BAND

1
2
a
4
5
6
7
8

9
10
11

12
13
14

15

, i_r,, , ,,

4 5 6

0.40 - 0.92
0.92 - 1.26
1.26 - 1.28
1.48- 1.78
1.98 - 2.40

0.40 - 0.70
0.70 - 0.92
0.92 - 0.96
0.96- 1.06
1.06- 1.28
1.48- 1.78
1.98- 2.40

0.40
0.44
O.50
0.52
0.66
O.84
0.92
0.94
1.00
1.04
1.12
1.48
1.64
1.98
2.20

- 0.44
- O.5O
- O.52
- 0.66
- 0.84
- 0.92
- 0.94
- 1.00
- 1.04
- 1.12
- 1.28
- 1.64
- 1.78
- 2.20
- 2.40

An algorithm is developed to automatically choose the linearly

independent bands from the first 6 eigenfunctions. Table 3.5 shows the resutt.

Basically, this algorithm checks the rank of the matrix consisting of the bands
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derived in Table 3.4. First, the linearly dependent bands in Table 3.4 are

ranked from the widest to the narrowest. Then, starting from the widest band,

this algorithm checks the matrix rank. If the rank is less than the total number of

the band features, the band features in the matrix are linearly dependent, the

widest linearly dependent band in the matrix is then eliminated from the set. On

the other hand, if the rank is equal to the total number of the band features,

increase the matrix rank by one and test the next widest band.

The procedure used in the above overlapping band feature selection

algorithm can find the largest set of smallest bands that are linearly

independent. This procedure can be summarized as follows :

(1)

(2)

(3)

(4)

(5)

(6)

Find the band edges of each individual eigenfunction

Rank these linearly dependent bands from the widest to the

narrowest, then set rank n - 1

Starting from the widest band, check the rank of the feature matrix

If the rank is less than the total number of the bands, eliminate the

widest linearly dependent band in the matrix, then go to step (3) to

test the next widest band;

If the rank is equal to the total number of the bands, increase n

by 1, then go to step (3) to test the next widest band

Set up the final feature set
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Table 3.5 Linearly Independent Bands Found by Overlapping
Band Feature Selection Algorithm for Data Set K2

Band
i

1
,wavel?,ngth.(p.m) ,

0.70 - 0.92
2 1.98 - 2.20
3 2.20 - 2.40

4 0.66 - 0.84
5 1.48- 1.64
6 0.52 - 0.66
7 1.64- 1.78
8 1.16- 1.28
9 0.96- 1.06

10 1.04- 1.12
11 0.94 - 1.00

" 12....... 0.44 - 0.50
13 1.12- 1.16

14 0.92 - 0.96
15 ....... 0.40 - 0.44

16 1.00- 1.04
17 1.00 - 1.02
18 1.26 - 1.28
19 0.50 - 0.52
20 0.92 - 0.94

3.5 Experimental System

In order to process the data in a digital computer, the spectral reflectance

function X(;L), the weight function W(_.), the optimal basis function @i (_.) and

the sequence of the optimal basis functions ¢_(_.)are represented by their

discrete approximations, vector X, diagonal matrix W, basis vector @i and the

matrix d_ respectively.

An experimental software system has been set up to test the four

approaches developed in the previous sections. This system has been
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implemented on IBM 3083 computer. A collection of field data consisting of

spectral sample functions on three dates from Williams County, ND, and three

dates from Finney County, KS, was available from the field measurement library

at Purdue/LARS. The spectral functions were sampled at 0.02 I_m over the

range 0.4 to 2.4 IJ.m, therefore, the dimensionality is 100.

The optimal features are found numerically by estimating the covadance

matrix from the sample functions. Maximum likelihood estimates of the mean

and covariance matrix are given [34] by

and

- 1 y, X (3.1)
M x = E(X)= X - i,_l"s . I

N S

Z(;

where Ns is the number of the sample functions and Xi is the ith sample vector.

The covariance matrix is then used to solve the discrete form of the generalized

Karhunen Loeve Equation [14,15]

K xw(b =¢r (3.3)

where the ¢, F and W are the eigenvectors, eigenvalues and the weight

matrix, respectively. The solutions of the equation are the optimal features.

In order to find appropriate non-overlapping bands used in feature

design, the non-overlapping band feature selection algorithm is applied to the
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average of the first few eigenvectors. Three cases were studied, tests using the

first 6, 12 or 24 eigenvectors in the algorithm. For the illustrative example shown

in section 3.1, the second case is considered.

For overlapping band features, the infinite clipping procedure is applied

to each individual eigenfunction. In this preliminary test the first 6

eigenfunctions from each of the 6 data sets are used. The locations of the

important spectral bands are then extracted. After applying the overlapping

band feature selection algorithm to the spectral bands derived above, the

desired linearly independent (L.I.) band features are found.

The bands found by the above two algorithms, the Walsh functions or the

infinite clipped optimal features developed from the structure similarity property

are then used as spectral features to perform the linear transformation on the

data sets.

= <3T W X (3.4)Yi

In order to test the spectral features thus determined, the probability of

correct classification is estimated using them. To do so, the class-conditional

statistics are first computed using the transformed data. An algorithm based on

the maximum likelihood estimator [34] is then applied, where the class

conditional statistics are assumed to be multivariate Gaussian.
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3.6 Preliminary Results

After applying the N.O.L. band feature selection algorithm to the average

of the first 6, 12 or 24 eigenvectors of the six test data sets, the band edges are

found. Table 3.6 shows the results for the data set K2 for three different number

of eigenvectors. These three feature sets are named as proposed sensor C1,

C2 and C3 respectively. For brevity, they are denoted PC1, PC2 and PC3. On

the other hand, the O.L. band feature selection algorithm is applied to the first 6

eigenfunctions, the result of the first 16 linearly independent bands is shown in

Table 3.7 for data set K2.

Furthermore, the probabilities of correct classification using Landsat (LS)

MSS bands, Thematic Mapper (TM) bands and the two sensors proposed in

Wiersma's work (PA and PB) [14,15] are also computed here. Table 3.8 shows

the band edges associated with each sensor [15].

Table 3.6 Bands Found by Non-Overlapping Band
Feature Selection Algorithm for Data Set K2

Band PC1 PC2 PC3
1
2
3
4
5
6
7
8
9

10
11
12
i3
14
15
16

0.40 - 0.68 0.40 - 0.68 0.40
0.68 - 0.84 0.68 - 0.90 0.66
0.84 - 0.90 0.90 - 0.92 0.80
0.90 - 0.96 0.92 - 0.94 0.88
0.96- 1.00 0.94- 1.00 0.94
1.00 - 1.06 1.00 - 1.06 1.00
1.06 1.12 1.06 - 1.12 1.04
1.12 1.28 1.12 - 1.26 1.16
1.48 1.74 1.26- 1.28 1.26
1.74 - 1.78 1.48 - 1.78 1.48
1.98 - 2.40 1.98 - 2.40 1.54

1.64
1.74
1.98
2.20
2.26

- 0.66
- 0.80
- O.88
- O.94
- 1.00
- 1.04
- 1.16
- 1.26
- 1.28
- 1.54
- 1.64
- 1.74
- 1.78
- 2.20
- 2.26
- 2.4O
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Table 3.7 Bands Found by Overlapping Band Feature
Selection Algorithm for Data Set K2

[_Band Wavelength (l_m:
..... 0921 0.70 - .

2 1.98 - 2.20
H,,,

3 - 2.40

4 - 0.84
5 1'.'48- 1.64

6 0.52 - 0.66
7 1.64- 1.78
8 1.16- 1.28
9 0.96-1.06

10 1.04- 1.12
11 0.94 - 1.00
12 0.44 - 0.50

13 1.12- 1.16
14 0.92 - 0.96
15 0.40 - 0.44
16 1.00 - 1.04

Figures 3.5 to 3.10 are the classification performance comparisons of the

optimal functions (Optimal), Walsh functions (Walsh) and the infinite clipped

optimal functions (Clipped) for the 6 data sets. Figure 3.11 to 16 are the

comparisons of the LS, TM, Wiersma's proposed sensor PA, non-overlapping

band features (NOL) derived from the first 24 eigenfunctions (i.e., PC3),

overlapping band features (OL), Walsh functions, infinite clipped optimal

functions and optimal functions for the 6 preliminary test data sets. From the

implementation point of view, since there are only two values (+1, -1) for the

Walsh functions and three values (+1, -1, 0 ) for the infinite clipped optimal

functions, it can be concluded from Figures 3,5 to 3.16 that representing the

optimal features using their infinite clipping versions or using the first 16 Walsh

functions produces the more practical features used for classification which
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provide a classification accuracy quite near that of optimal features. The

classification performances estimated for the above sensors are shown in Table

3.9, where PC1, PC2 and PC3 represent the sensors derived from N.O.L.

band feature selection algorithm using the first 6, 12 and 24 eigenvectors as

their input respectively; Optimal, Walsh and Clipped stand for the sensors using

the first 16 optimal functions, the first 16 Walsh functions and the first 16 infinite

clipped optimal functions as spectral features respectively.

Table 3.8 Band Edges of Landsat MSS, TM, PA and PB Sensors

_Band I LS "
0.50-0.601

2
3
4
5
6

111 i

8

TM PA PB

II .i I0.45-0.52 0.42-0.54 0.42-0 66
0.60-0.70 0.52-.060 0.56-0.66 0.68-0.70
0.70-0.80 0.63-0.69 0.68-0.70 0.72-0.92
0.80-1.10 0.76-0.90 0.72-0.90 0.94-1.04

1.55-1.75 0.92-1.00 1,06-1.10
2.08-2.35 1.02-1.30 1.12-1.30

1.52-1.74 1.52-1.74
1.96-2.40 1.96-2.40

Table 3.9 Probability of Correct Classification for 6 Data Sets

LS
TM
PA
PB

PC1
PC2

PC3 (NOL)
OL

Walsh

Clipped
Optimal

0.90 0.78 0.85 0.77 0.83 0.96
0.92 0.79 0.93 0.89 0.95 0.99
0.94 0.86 0.95 0.92 0.96 0.99
0.94 0.85 0.94 0.89 0.96 0.96
0.94 0.87 0.96 0.92 0.97 0.99
0.96 0.88 0.97 0.94 0.97 0.99
0.96 0.94 0.98 0.96 0.98 0.99
0.97 0.94 0.98 0.97 0.99 0.99
0.98 0.95 0.98 0.95 0.98 0.99
0.98 0.97 0.99 0.97 0.99 0.99
0.98 0.97 0.98 0.97 0.99 0.99

SENSOR K1 K2 K3' N1 N2 N3
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3.7 Selection of the Best On-Board Preprocessing Scheme

From Table 3.9 and Figures 3.5 to 3.16, it is seen that the four

approaches developed in this research, two based on the " shape " of the

optimal features and the other two from their "structure" similarity with the

optimal functions, are feasible ways for feature design.

The fundamental objective of this research is to develop an objective and

practical spectral feature design technique for high dimensional multispectral

data. There are two important factors, simplicity and effectiveness, which must

be considered in this respect.

First of all, from simplicity point of view, the overlapping band feature

selection algorithm is harder to perform than the other three because of the

existence of linear dependence problem. In order to find appropriate

overlapping band features, we have to check the rank of the matrix for each

newly selected band. This procedure needs more time than the other three

approaches. However, its classification performance [ referring to Figure 3.11 to

3.16 ] does not indicate much advantage over the other three, especially the

infinite clipped optimal function approach.

For example, Figure 3.11 and 3.12 show that for Kansas September

and Kansas May data the performances of the overlapping band feature

selection algorithm are the 3rd best among the four techniques. The infinite

clipped optimal function approach and the Walsh function approach have better

performances than that of the overlapping band feature selection algorithm.

Figure 3.13 to 3.16 indicate that the performances of the overlapping band

feature selection algorithm are never better than those of the infinite clipped



56

optimal function approach. Therefore, from simplicity point of view, the

overlapping band feature selection algorithm would not be used in this thesis as

the best technique for the final data preprocessing system.

On the other hand, from effectiveness point of view, referring to Table

3.9 and Figure 3.5 to 3.16 again, it is shown that the infinite clipped optimal

transform has better performance than the Walsh transform and the non-

overlapping band feature selection algorithm.

For instance, Figure 3.5 to 3.10 indicate that the infinite clipped optimal

features have better classification accuracy than the Walsh features for all the

six preliminary test data sets in Kansas and North Dakota. Figure 3.11 to 3.16

show that the infinite clipped optimal features perform better than the non-

overlapping band features for all the 6 test data sets except for North Dakota

August data (Figure 3.16) where these two techniques have the same

performance.

Therefore, from simplicity and effectiveness point of view, the infinite

clipped optimal transform is chosen to be the best scheme in the data

preprocessing stage of the spectral feature design system.

The processing up to this point, consisting of the optimal features

calculation, the infinite clipping, and the data transform is based solely upon the

ensemble statistics of the field data. Additional a priori knowledge that might

be used to improve the performance is the class statistics of the scene. The

objective Is then to find the best features under the criterion of maximal class

separability.
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3.8 Canonical Analysis and Ground Station Data Processing.

Canonical Analysis is a technique that can be used to find the optimal

features under a maximal separability criterion [36-41]. Unlike principal

component analysis, which is based on the global covariance matrix of the full

data set, canonical analysis utilizes the class structure of the data. The

advantage of canonical analysis is its ordering property on the separability

measure. By using the features derived from canonical analysis to further

process the received transformed data, the classification performance should,

therefore, be improved.

Let Mi and Si be the ith class mean vector and covariance matrix of a

data set with L classes. In canonical analysis one first finds the within-class

scatter and the among-class scatter matrices Sw and Sa respectively

L (Ni- I)

Sw = __, Ns *S., (3.5)i=1

where Ni is the number of samples of the ith class data and Ns is the total

number of samples of the ensemble. And,

1 L

Sa - L .__i_1(Mi" Mo)(Mi- M°)T (3.6)

where Mo is the global mean, given by

L N

Mo=  s"M, (3.7)
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The within class scatter matrix, Sw, is an average quantity that describes

how closely the samples are distributed around their class means while the

among class scatter matrix, Sa, is a quantity measuring the average degree of

closeness between the ensemble mean and each class mean. The optimally

separable feature is a feature such that Sw is minimized and Sa is maximized

after the transformation. Define a quantity r and let the desired feature be

vector d. Then the objective is to find the r and d that result in maximal

class separability. That is,

dTSa d
r - (3.8)

dTSw d

must be maximized. The ratio of variances in the new space is maximized by

the selection of feature d if,

_)r _ 0
_)d (3.9)

The above equation can be reduced to

(Sa-r*Sw)*d = 0 (3.10)

which is called a generalized eigenvalue equation and must be solved now for

the unknown r and d. The first canonical axis will be in the direction of d, and r

will give the associated ratio of among-class to within-class variance for that

axis.
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The development to this stage is usually referred to as discriminant

analysis. One more step is included in the case of canonical analysis where

the derived canonical features are normalized with respect to the within class

scatter matrix. That is,

DT*Sw*D = I (3.11)

where D is the matrix of canonical features d. This says that the within class

scatter matrix after the transformation must be the identity matrix. In other

words, after transformation, the classes should appear spherical.
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CHAPTER IV

RESULTS AND DISCUSSIONS

In the previous chapter, we have introduced the four spectral feature

design techniques developed in the course of this research. Six preliminary

test data sets in Kansas and North Dakota were used to test the schemes. From

a simplicity and effectiveness point of view, the infinite clipped optimal

transform is chosen as the better means for data preprocessing. Furthermore,

canonical analysis is applied to the above received transformed data on the

ground station to achieve the maximal class separability. In this chapter, both

the vegetation and the soil data will be used to find the classification

performance for the final spectral feature design system. The spectral range for

the vegetation data is from 0.4 pm to 2.4 p.m with resolution 0.02 p.m while the

range for the soil data is from 0.45 I_m to 2.45 p.m with resolution 0.01 p.m.

Therefore the dimensionality for the vegetation data and the soil data is 100 and

200 respectively. The final results of these data will be presented in section

4.1 and 4.2. Moreover, due to the limited sample size of the data set to

estimate the covariance matrix, different degree of Hughes phenomenon

occurs in some of the one-day Kansas and North Dakota vegetation data sets

as well as in all soil data sets. This effect will be discussed in section 4.3.
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4.1 Vegetation Data

Four sets of multitemporal multispectral data collected in Kansas, North

Dakota, Iowa and South Dakota are acquired to test the proposed spectral

feature design system. Table 4,1 show the species, the dates on which the

data were collected, and the total numbers of sample functions for each

information class. In Table 4.1, the numbers appearing in the parentheses are

the total numbers of sample functions collected for that class. Furthermore,

W.Wheat and S.Wheat stand for winter wheat and spring wheat respectively.

Figure 4.1 to 4.6 show the probability of correct classification, Pc, using

the optimal features, infinite clipped optimal features and features that are

derived from infinite clipped optimal transform and canonical analysis for the six

preliminary test data sets. These 6 data sets are part of the multitemporal data

in Kansas and North Dakota ( referring to Table 1.1 and Table 4.1 ). Each one

of them consists of the sample functions collected on one single date and has 3

informational classes. The results indicate that using the first 16 infinite clipped

versions of the optimal functions, 95% classification accuracy can be achieved.

Another important point is the occurrence of Hughes phenomenon

[42,43] shown in Figure 4.1 to 4.4. It says that for data set K1, K2, K3 and N1,

increasing the computational complexity [11] does not always increase the

classification performance. For example, Figure 4.1 shows that canonical

analysis improves the accuracy for the first 3 features, but it does not help

beyond this complexity for data set KI. Figure 4.2 to 4.4 show that canonical

analysis can only have better performance for the first 4 features for data sets

K2, K3 and N1 respectively.
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For data set N2 and N3, it is found in Figure 4.5 and 4.6 that Hughes

phenomenon does not occur, and the classification performance using the

features derived from infinite clipped optimal transform and canonical analysis

is always better than those of the optimal features and the infinite clipped

optimal features. It is also shown that only 2 features are needed to have about

94% and 99% classification accuracy for these 2 data sets respectively.

Figure 4.7 and 4.8 show the results for Kansas and North Dakota multi-

temporal data. Each one has 9 information classes collected on 3 different

dates from 1976 to 1977. The results indicate that canonical analysis improves

the accuracy by about 15% to 25% for the first feature and about 1% for the first

16 features. Figure 4.9 is the results of Kansas and North Dakota combined

data with 18 information classes. It is used to show the robustness property of

this spectral feature design system. The results show that the technique is not

overly sensitive for spatially and temporally combined data.

Figure 4.10 and 4.11 are the results for 25-class Iowa and 42-class

South Dakota multi-temporal data. They are used to show the capability of this

spectral feature design system for complex data sets. It can be seen that the

system is very successful in this respect.
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Table 4.1 : Vegetation Data Sets.
Numbers in the parenthesis are the total numbers of samples.

Kansas Vegetation Data Set • 9 classes

I "9i28176 5/3/77
I

W.Wheat ( 141 )
Summer Fallow (414)

Sorghum ( 277 )

W.Wheat ( 658 )
Summer Fallow., ( 211 )

Unknown Class ( 682 )

6/26/77
I i

WlWheat ( 677 )
Summer Fallow ( 643 )

Sorghum ( 157 )

North Dakota Vegetation Data Set 9 classes

I 5/8177 6/29/77 8/4/77
' r'l _m

&Wheat ( 664 )
Summer l=allow (437)

Pasture ( 164 )

S.Wh.eat ( 787 )

Summer Fallow ( 291 )

Pasture (161) .......

S.Wheat (931)

Summer Fallow ( 330 )

Pasture(183)

Iowa Vegetation Data Set • 25 classes collected on 9 different dates of 1979;

5115179 5i23/7§

Corn Corn

(514) (517)
Soybeans

(36)
Oats Oats
(41) (32)

6/11/79

Corn Corn

( 621 ) ( 610 )
Soybeans Soybeans

(517) (485)
Oats Oats

(45) (21)

6/29/79 17il 6/79
'_ _Corn

( 437 )
Soybeans

(377)
Oats
(22)

7/17/79

Corn

(190)
Soybeans

(172)
Oats

(25)

8/30/79

Corn

( 650)
Soybeans
, (568)

Oats

(42)

10/25/79

Com

(435)
Soybeans

(417)
Oats

{44)

11/2/79

Corn

(393)
Soybeans

(267)

South Dakota Vegetation Data Set • 42 classes collected on 6 different dates of 1978 and 1979

9/21178

Pasture (225)

Alfalfa ( 61 )

W.Wheat (292)

S.Wheat (469)
Barley ( 8_2)

Oats ( 182 )

IdleLand ( 63 },
Sorghum (103)_

Sunflower (39)
Corn ( 39 )

10/26/78

Pasiure (217)

Alfalfa ( 51 )

W.Wheat (393)
S.Wheat(441)

Barley ( 80 )

Oats ( 88 )

Sorghum (88)

Sunflower (41):

Corn ( 32 )
Millet ( 26 )

, 4'

6/1179
i i

S.Wheat(1181
Barley ( 43 )

6/21/79 7/25/79 8/11/79

Alfalfa ( 45 ), Alfalfa ( 42 )

,S,:Wheat( 121 )
Barley ( 44 )

S.Wheat (102)

Barley ( 66 )
Oats ( 89 )

Sorhgum (78)

Sunflower (53)

Corn ( 147 )

Millet( 39 )
Safflower (24)

S.Wheat (119)

Barley ( 69 )

oatsL76)_

Sorhgum (96)

Sunflower (107)
Corn ( 154 )

Millet ( 28 )
Safflower (19)
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Figure 4.1 Classification Performance for Data Set K1
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0.6

Pc 0.5

0.4

0.3
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Kansas May Data
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Number of Features
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Figure 4.2 Classification Performance for Data Set K2
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Figure 4.3 Classification Performance for Data Set K3
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North Dakota May Data
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I I I I I I I I I I I I I I I
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Figure 4.4 Classification Performance for Data Set N1
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Figure 4.5 Classification Performance for Data Set N2
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Figure 4.6 Classification Performance for Data Set N3
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1.0

Kansas Vegetation Data

Pc

0.9

0.8

0.7

0.6

0.5

0.4

0,3

0.2

0.1

0.o

/
/

-0- OptimaI-K
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Clipped&Cano-K
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Figure 4.7 Classification Performance for Kansas
Mu!titemporal Data Set
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Figure 4.8 Classification Performance for N. Dakota
Multitemporal Data Set
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Figure 4.9 Classification Performance for
KS/ND Combined Data Set
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Figure 4.10 Classification Performance for Iowa

Multitemporal Data Set
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Figure 4.11 Classification Performance for S. Dakota
Multitemporal Data Set
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4.2 Soil Data

In addition to the above FSS vegetation data, a soil data base with 571

soil samples collected by Eric Stoner [45] in 1979 was acquired to test the

system. The soil reflectance functions were measured by an EXOTECH-C

spectrometer in the laboratory. In this research, five data sets grouped by soil

order, organic matter content #1, organic matter content #2, Iron oxide content

and soil texture [46-50] were formed respectively to test the spectral feature

design system. They are designated as data sets SO, OM1, OM2, IO and ST

respectively. It should be noted that the same soil samples are used in the data

sets, but they are only grouped differently into classes. The soil data set

designated as organic matter content #1 is from the soil orders Mollisol and

Alfisol [48] only, while the soil data set designated as organic matter content #2

is from all soil orders. These 5 soil data sets are shown in Table 4.2

Table 4.2(a) shows the 10 soil orders in American Soil Taxonomy [48].

Since the total numbers of sample functions for Spodosol, Vertisol, Histosol and

Oxisol are very limited, in this research, these soils are not used to form the

data set SO. Only the data in the first 6 soil orders are included in SO. Table

4.2(b), (c) and (d) indicate the ranges of organic matter content #1, organic

matter content #2 and iron oxide content respectively. Six classes are chosen

in these 3 data sets: OM1, OM2 and IO. Table 4.2(e) shows the 6 soil texture

classes used in data set ST where some of the classes consist of more than one

soil texture group. For example, class 1 in data set ST includes clay and silty

clay; class 2 includes sandy clay loam, clay loam and silty clay loam; etc.

The results of these 5 soil data sets are shown in Figure 4.12 to 4.16.

Taking a general view of these graphs, it is found that the cumulative
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performances of these soil data sets are less like a standard error function

compared to those found in vegetation data sets (referring to Figure 4.1 to

4.11). The reason for this is that the total numbers of sample functions used to

estimate the covariance matrices in the soil data sets are very limited, from a

little more than the dimensionality in data set OM1, that is, 255 sample functions

with dimensionality 200, to about 2.5 times the dimensionality in SO, OM2, IO

and ST, that is about 500 sample functions for each data set; while on the other

hand at least 8 times the dimensionality are available in the vegetation data

sets. For example, the smallest data set K1 has 832 sample functions with

dimensionality 100 and data sets other than K1 have more than 1000 sample

functions to estimate the covariance matrix. Therefore, the estimates of the

covariance matrices for the vegetation data sets are likely to be much more

accurate than those for the soil data sets. The subsequent Gaussian model thus

becomes more valid for the vegetation data and the cumulative classification

curves are more like a standard error function.

Furthermore, Figure 4.12 to 4.16 show that the infinite clipped optimal

functions are very effective to extract the information for soil classification. For

instance, Figure 4.12 to 4.13 indicate that using the first 16 infinite clipped

optimal functions, over 90% accuracy can be achieved while Figure 4.14 to

4.16 tell that over 85% accuracy is obtained. Due to the limited sample size for

each of the soil data sets, different degrees of the Hughes phenomenon occur.

Figure 4.12 to 4.14 show that canonical analysis improves the performance for

the first 5 features while Figure 4.15 to 4.16 show that improvement is possible

up to the first 7 features.
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Table 4.2 Soil Data Sets •

(a) SO by Soil Order

Sample size for the first 6 classes • 479
class # Order Name # of Sample Functions

I

Mollisol1
2 Alfisol 113
3 Entisol 78
4 Aridisol 52
5 Ultisol 45

,,, ,,

376
7

Inceptisol
Spodosol
Vertisol

1'5'Z

30
118

9 Histosol 8

10 Oxisol 11
11 Unclassified 32

(b) OM1 by Organic #1
Soil from Mollisol and Alfisol onl]r. Sample size : 255

Class # Or_lanic Matter Range % # of Samj31e Fun_ions
0.11 ~ 1.5

iiii i

511
2 1.5 ~ 2.0 54

-- 3 2.0 _ 2.5 33
4 2.5 ~ 3.5 45
5 3.5 ~'5.0 39
6 5.0 ~ 10.12 33

(c)
Soil from all orders. Sam

Class #
iii i

1

OM2 by Organic #2
_le size • 514

I Organic Matte'ri',Range %
0.08 ", 1.0

2 1.0 ~ 2.0
2.0~3.0

# of Sample Functions

82
135
1203

4 3.0~4.0 54
m

5 4.0~6.0 59
6 6.0 84.79 64
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Table 4.2, continued

(d) IO by Iron Oxide Content
Sample size : 467

Class #
I

1
2
3

Iron Oxide Range % # of Sample Functions
0.02 ~ 0.4 102
0.4 ~ 0.6 73
0.6 ~ 0.8 69

4 0.8 ~ 1.2
5 1.2 ~ 1.6

6

105
52

1.6 ~ 25.6 66

Class #

(e) ST by Soil Texture
Total sample size • 483 excludin_l the unclassified

Soil Texture Group/Groups # of SamPle Function Class Sample Size

2

3

4

Clay
Silty Clay
Sandy Clay Loam
Clay Loam
Silty Cl.ay Loam
Coarse Sand
Large Coarse Sand
Sand

Large Sand
Large Fine Sand
Fine Sand

Coarse Sandy Loam
Very Fine Sandy Loam
Sandy Loam

Fine Sandy Loam
Loam

19
21

6
25
32

3
6

13
16
18
20

5
12
24
52

4O

63

76

93

5 68 68
6 Silt 4

Silt Loam 139 1 4 3
7 Unclassified 88 88
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Figure 4.12 Classification Performance for Soil
Data Grouped by Soil Order
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Soil Data Set Grouped by Organic Matter#1

0.8

Pc 0.6

1.0

0,9

0.7

Optimal-OM1

0.5 ----e---- Clipped-OM1

Clipped&Cano-OM1

0.4

0.3

0.2 , I I I | I I I i I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Features

6

Figure 4.13 Classification Performance for Soil
Data Grouped by Organic #1
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Soil Data Set Grouped by Organic Matter#2
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Figure 4.14 Classification Performance for Soil
Data Grouped by Organic #2
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Soil Data Set Grouped by Iron Oxide Content
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Figure 4.15 Classification Performance for Soil
Data Grouped by Iron Oxide



83

1.0

0.9 ¸

0.8

0.7

Pc 0.6

0.5

0.4

0.3

0.2

Soil Data Set Grouped by Soil Texture

Optimal-ST

Clipped-ST

Clipped&Cano-ST

'1 I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 1011 12131415

Number of Features

Figure 4.16 Classification Performance for Soil
Data Grouped by Soil Texture
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4.3 Hughes Phenomenon

In 1968, Hughes [42] showed theoretically that the mean recognition

accuracy for the statistical pattern classifiers did not always increase as the

measurement complexity increased so long as the number of training samples

was fixed and finite. This result was experimentally demonstrated in a remote

sensing context by Fu, Landgrebe and Phillips [43] in 1969. The conclusion of

these investigations was that for a fixed number of training samples, there is an

optimal measurement complexity. More complexity is undesirable from the

standpoint of expected classification accuracy.

Kalayeh, Muasher and Landgrebe [51,52] developed a criterion to

predict the occurrence of the Hughes phenomenon. They suggested that a

number of sample functions equal to about 8 to 10 times the dimensionality

must be available for the ensemble in order to avoid the Hughes phenomenon.

In this section, four experiments are described to show that the Hughes

phenomenon did occur in the data sets with limited training samples. The data

sets K1 and N2 were chosen for this purpose because K1 has the least training

samples ( referring to Table 1.1 ) among all vegetation data sets and N2

( referring to Figure 4.5 ) indicated some possibility for the occurrence of the

Hughes phenomenon. Tables 4.3(a) to (d) show the data used for these 4

experiments and Figures 4.17 to 4.20 show the results. In the above tables and

figures, K1H and N2H are the data sets with about one half of the original

training samples while K1Q and N2Q represent those with approximately one

quarter of the training samples.
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Figure 4.17 and 4.18 show that for data set K1, the Hughes phenomenon

has occurred ( referring to Figure 4.1 ). If the size of the training samples is

reduced to half or even to quarter, the effect of this phenomenon becomes

more and more serious. On the other hand, for data set N2, there is no

Hughes phenomenon ( referring to Figure 4.5 ). If the size of the training

samples becomes one half of the original N2, the Hughes phenomenon might

or might not occur. Figure 4119indicates that for data set N2, reducing the size

of the training samples to approximately one half, that is 630 samples with

dimensionality 100, the estimate of covariance matrix is still accurate enough,

and the Hughes phenomenon does not occur.

However, if the training size of the data set N2 is reduced to one quarter,

the Hughes phenomenon does occur. Figure 4.20 says that the optimal

number of features in this data set N2Q with 315 training samples is only 2.

The maximal classification accuracy that can be achieved is about 85%.

Furthermore, more than 2 features used for classification would not help the

performance and in some cases even reduce the accuracy.

The four experiments in this section indicate that for data set K1, more

than 832 samples are needed in order to avoid the effect of Hughes

phenomenon; on the other hand, for data set N2, "1239 samples are enough to

accurately estimate the covariance matrix. From the classification performances

of data sets K1, K2, K3 and N1, shown in Figure 4.1 to 4.4, it is suggested that

more than 15 times dimensionality sample functions may be required to avoid

the effect of the Hughes phenomenon.
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Table 4.3 Data Sets Used to Test the Occurrence of

the Hughes Phenomenon •

(a) Kansas September Data With Half Training Samples -
Data Set K1H

K1H Winter Wheat

Training 70

Testing 71
Total 141

Summer Fallow I Grain Sorghum Total Samples

200 140 410
214 137 412
414 277 832

(b) Kansas September Data With Quarter Training Samples •
Data Set KIQ

K1Q Winter Wheat Summer Fallow Grain Sorghum Total Samples

Training 35 100 205
Testing 106 314 207 627

Total 141 414 277 832

(c) North Dakota June Data With Half Training Samples •
Data Set N2H

N2H

Training
Testing

Total

I Spring Wheat

400

Summer Fallow

150

387 141
787 291

Natural Pasture Total Samples

80 630
81 6O9

161 1239

(d) North Dakota June Data With Quarter Training Samples •
Data Set N2Q

N2Q I Sp_ ng Wheat

Training 200
Testing 587

Summer Fallow

75

216

Natural Pasture Total Samples

4O 315
121 924
161 1239Total 787 291
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Figure 4.17 First Experiment of the Hughes Phenomenon •
Data Set KIH
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Figure 4.18 Second Experiment of the Hughes Phenomenon •
Data Set KIQ
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Figure 4.19 Third Experiment of the Hughes Phenomenon •
Data Set N2H



90

1.0

North Dakota June Data

Quarter Training Samples

0.9

0.8

0.7

0.6

Pc 0,5

0.4

0.3

0.2 ¸

0.1

0.0

OptimaI-N2Q

Clipped-N2Q

Clipped&Cano-N2Q

I

0 1
l I I I I I I I I I l I I I

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Features

6

Figure 4.20 Fourth Experiment of the Hughes Phenomenon •
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4.4 Signal to Noise Ratio Considerations

In the previous sections, the classification results obtained by using the

spectral features developed in this research are presented for 100 dimensional

FSS vegetation data and 200 dimensional Exotech-C soil data. It is found

( referring to Figure 4.1 to 4.16 ) that about 10 to 1 compression ratio can be

achieved while maintaining satisfactory classification accuracy. One question

an Earth scientist user of the algorithm may have is that the 10 to 1 downlink

data rate reduction is not at a severe cost to the usefulness of the data. Thus, in

this section, we will discuss the data volume reduction issue from the Earth

scientist point of view, that is, from signal-to-noise ratio considerations.

Weighted Karhunen-Loeve transform rotates the original N-dimensional

signal space to a more favorable orientation. This orientation is one in which

the source energy is redistributed such that a larger percentage of the energy is

distributed over fewer coordinates. Table 4.4 and Figure 4.21 show how the

source energy is redistributed over the first 25 transformed coordinates for 100

dimensional vegetation data set K2.

In Table 4.4, the first row shows that the magnitude of the total source

energy is 3497, which is the sum of all eigenvalues; Further, the mean square

representation error (MSE) and percent mean square representation error

(%MSE) are 3497 and 100% respectively if 'none' of the optimal feature is used

to transform the data. The second row indicates that the magnitude of the first

eigenvalue is 2779.8; If the first optimal feature is used to transform the data,

the representation error and percent representation error will be 717 and 20.5%

respectively, that is, the first transformed coordinate contains about 79.5%
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source energy in it. Similarly, it can be found that using the first 2 optimal

features, about 97.5% of the total source energy can be preserved, and using

the first 10 optimal features to transform the data in the measurement space,

the percent mean square representation error, that is 0.17%, is indeed

negligible. Figure 4.21 shows graphically how fast the representation error can

be reduced by using the first few optimal features. It should be noticed that the

representation error (MSE) is plotted in logarithmic scale.

The practical values of the signal to noise ratio in a typical remote

sensing system are from 50 to 200 in most of the 0.4 to 2.5 I_mspectrum range

[1]. This indicates that the maximal noise level in the system is only 1/50, that is,

2%. Since using the first 10 optimal features derived from the Weighted K-L

transform preserves almost all the signal energy in the original measurement

space; Further, the representation error level is 0.17% which is much lower

than the noise level in the system. Hence, the effect on the signal to noise ratio

due to compression is quite limited even as the signal to noise ratio is down to

20. Therefore, a data volume reduction by a factor of 10 is achieved with

essentially no loss of information.
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Table 4.4 Mean Square Representation Error for Data Set K2

Eigenv'alue

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

I Magnitude of Eigenvalue ....

3497.069i'

2779.8821
627.0327

39.0218
18.4108
14.0425

4.9193
2.5450
1.8422
1.7561
1.3731
0.8927
0.8225
0.6291
0.4818
0.4498
0.3778
0.3469
0.3266
0.2328
0.2192
0.1696
0.1499
O.1268
0.1174
0.0904

Mean Sq,,uareError
3497.069t

717.1870
90.1543
51.1325
32.7217
18.6792
13.7599
11.2149

9.3727
7.6166
6.2435
5.3508
4.5283
3.8993
3.4175
2.9676
2.5898
2.2429
1.9163
1.6835
1.4643
1.2947

% Mean Square

100.0000
20.5082

2.5780
1.4622
0.9357
0.5341
0.3935
0.3207
0.2680
0.2178
0.1785
O.1530
0.1295
0.1115
0.0977
0.0849
0.0741
0.0641
0.0548
0.0481
0.0419
0.0370

Error

1.1448
1.0181
0.9006
0.8103

0.0327
0.0291
0.0258
0.0232
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Figure 4.21 Mean Square Representation Error for Data Set K2





95

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The fundamental objective of this research is to develop an objective and

practical spectral feature design technique for high dimensional multispectral

data. In this thesis, four spectral feature design techniques have been

developed. Two of them, non-overlapping band feature selection algorithm

and overlapping band feature selection algorithm, are derived from the spectral

dominancy concept of the optimal functions; the other two, Walsh function

approach and infinite clipped optimal function approach, are derived from the

spectral similarity concept of the optimal functions. These four approaches

have been proved effective for data compression and classification purposes in

high dimensional multispectral data.

A comparison among these four techniques indicates that the infinite

clipped optimal function approach is the best scheme since the features are

easiest to find and their classification performance is the best under the same

compression requirement. This technique approximates the spectral structure of

the optimal features via infinite clipping and results in transform coefficients

which are either +1, -1 or 0. Therefore the necessary processing can be easily

implemented on-board the spacecraft by using a set of programmable adders

that operate on the grouping instructions received from the ground station.
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After the preprocessed data has been received, canonical analysis is

further used to find the best set of features under the criterion that maximal class

separability is achieved

Both vegetation and soil data have been tested in this research. For

vegetation data, four sets of multitemporal multispectrai vegetation data

collected in Kansas, North Dakota, Iowa and South Dakota respectively with 9

to 42 information classes in 1976 to 1979 are used to test the spectral feature

design system. One spatially and temporally combined data set is also formed

by combining the Kansas and North Dakota Data sets to test the robustness

property of the scheme. The results indicate that the system is not overly

sensitive to spatial and temporal variation.

Furthermore, a soil data base collected by Eric Stoner in 1979 was also

acquired and used to test the system. In this research, five different soil data

sets grouped by the soil order, organic content #1, organic content #2, iron

oxide content and soil texture are formed. The classification performances are

then found, it is shown that soil order, organic content percentage, iron oxide

content percentage and soil texture can be delineated and predicted by the

proposed technique.

It is concluded that the infinite clipped versions of the first 16 optimal

functions derived from the Weighted Karhunen-Loeve Transform have excellent

classification performance. Further signal processing by canonical analysis

increases the compression ratio while retains the classification accuracy. The

overall probability of correct classification of the proposed system is over 90%

while providing for a reduced downlink data rate by a factor of 10.
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5.2 Recommendations

The spectral feature design system developed in this research has been

demonstrated for the FSS vegetation data and the Exotech-C soil data. In the

future, it is proposed to test AVIRIS and HIRIS data. The following procedure is

recommended :

(A) Pre-Flight Stage :

(1) Collect enough representable samples from all reference sources

available, for example, the field data base collected in the past, to

form the ensemble of a specific problem (Ground Truth Gathering)

(2) Calculate the mean vector and covariance matrix of this ensemble

(3) Find the eigenvectors of the covariance matrix

(4) Run the spectral feature design system on the ground to find the

grouping coefficients ( either +1, -1, or 0 )

(B) On-Board Preprocessing Stage :

(5) Send up these grouping coefficients ( instructions ) to the

spacecraft for on-board data preprocessing

(c) Post-Flight Stage :

(6) Receive the preprocessed low dimensional data

(7) Run the spectral feature design system on the ground to find the

canonical features

(8) Use these canonical features to further transform the received data

into the final signal space where the data classification is

performed
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In this procedure, there are basically 3 processing stages involved

pre-flight stage, on-board preprocessing stage and post-flight stage. The pre-

flight stage, which consists of step 1 to step 4, is used to gather ground truth

information, estimate ensemble statistics and find appropriate grouping

coefficients from one of the four developed schemes. This stage would be done

before the data take by the aids of aerial photography, topographical maps,

historical information, field data base collected in the past or other reference

sources available. One more comment about this stage is the problem of the

sample size, it is suggested from the experience in this research that the total

number of samples used to estimate the ensemble statistics needs to be at least

15 times their signal dimensionality in order to accurately estimate the

covariance matrix.

The second stage, on-board preprocessing stage, which contains step 5,

performs band groupings on board the spacecraft, either summing (+1),

subtracting (-1) or omitting ( 0 ) bands for each spectral function according to the

grouping instructions sent by the ground user. Since this data preprocessing

stage would be done on board the spacecraft, from implementation point of

view, the algorithm simplicity is then required and important. The spectral

feature design system developed in this research makes this simplicity possible.

Figure 1.1 shows how the data preprocessing can be implemented on board

the spacecraft by a set of programmable adders.

Finally, the post-flight stage, which includes step 6 to step 8, is applied

to further process the received transformed data such that the maximal class
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separability is achieved. Since this stage and the pre-flight stage would be

done at the ground station, the algorithm simplicity is therefore less important

than that in the on-board preprocessing stage. Hence, it might be more

effective to use the overlapping band feature selection algorithm to design the

features in some future situations although it's the most complex among the

four techniques developed in this research.
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Appendix A IBM 3083 Macro File

/* RUN A FORTRAN PROGRAM USING IMSLSP OR IMSLDP SUBROUTINES */

ARG FN FNI FN2 FN3 FN4 FN5 FN6 FN7 FN8 FN9 FNI0 FNII

LINKTO IMSL

GLOBAL TXTLIB IMSLSP IMSLDP PFORTLIB VSF2FORT CMSLIB

GLOBAL LOADLIB VSF2LOAD

FORTVS2 FN

LOAD FN

FILEDEF ii DISK FNI DATA C1

FILEDEF 12 DISK FN2 DATA C1

FILEDEF 13 DISK FN3 DATA C1

FILEDEF 14 DISK FN4 DATA C1

FILEDEF 15 DISK FN5 DATA C1

FILEDEF 16 DISK FN6 DATA C1

FILEDEF 17 DISK FN7 DATA C1

FILEDEF 18 DISK FN8 DATA C1

FILEDEF 19 DISK FN9 DATA C1

FILEDEF 20 DISK FNI0 DATA C1

FILEDEF 21 DISK FNII DATA C1

START
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Appendix B Spectral Feature Design System- Program Listing

C
C
C

PROGRAM MV

P_TER (NP2=1551, NPI=I00, NP3=NPI* (NPI+I)/2, NF2=I 0,NF3=5)

REAL X(NP2,NPI) ,XM(NPI) ,VCV(NP3)

DATA IFLAGI,XM, VCV/0,NPI*0.0, NP3*0.0/

NPI :

NP2 :

NP3 :

NF2 :

NF3 :

DIMENSIONALITY OF SAMPLE FUNCTIONS

TOTAL NUMBER OF SAMPLE FUNCTIONS

TOTAL NUMBER OF ELEMENTS IN COVARIANCE MATRIX VCV
RAW DATA INPUT FILE STORED IN FORMAT 10F8.3

XM & VCV OUTPUT DATA FILE STORED IN FORMAT 5E15.7

X : RAW DATA ( INPUT )

XM : MEAN VECTOR ( OUTPUT )

VCV : COVARIANCE MATRIX STORED IN SYMMETRIC MODE ( OUTPUT )

IFLAGI ....... INTERNAL CHECKING PARAMETER

Ii = DATA FILE ; 12 = MV FILE

OPEN(II)
OPEN(12)

REWIND ii
REWIND 12

READ IN RAW DATA AND PRINT THE PROGRESS FOR EVERY i00 SAMPLES

DO 20 ISAMP=I,NP2

K=MOD (ISAMP, I00)

IF(K.EQ.0)PRINT*,' NP2 = ',NP2,' ; ISAMP = ',ISAMP

DO 20 I=I,NPI/NF2

20 READ (II, I) (X (ISAMP, J), J=l+ (I-l) *NF2, I*NF2)

PRINT*,' DATA READ IN FINISHED '

1 FORMAT (10F8.3)

FIND THE ENSEMBLE MEAN VECTOR

DO 30 J=I,NPI

DO 30 I=I,NP2

30 XM (J) =XM (J) +X (I, J)

DO 40 I=I,NPI

40 XM(I)=XM(I)/FLOAT(NP2)
PRINT*,' MEAN VECTOR FOUND '

FIND THE ENSEMBLE COVARIANCE MATRIX AND PRINT THE PROGRESS FOR

EVERY I0 DIMENSIONS

DO 50 I=I,NPI

KX=MOD (I,I0)

IF (KX. EQ. 0) PRINT*, I

DO 50 J=l,I

IND= (I-l) *I/2+J

MV 00010

MV 00020

MV 00030

MV 00040

MY 0005O

MV 00060

MV 00070

MV 00080

MV 00090

MV 00100

MV 00110

MV 00120

MV 00130
MV 00140

MV 00150

MV 00160

MV 00170

MV 00180

MV 00190

MV 00200
MY 00210

MV 00220

MV 00230

MV 00240

MY 00250
MV 00260
MV 00270

MV 00280

MV 00290

MV 00300

MV 00310

MV 00320

MV 00330

MV 00340

MY 00350

MV 00360

MV 00370

MV 00380
MV 00390
MV 00400

MV 00410

MV 00420

MV 00430

MV 00440

MY 00450

MV 00460

MV 00470

MV 00480

MV 00490

Nv 00500
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C
C
C

C

C

C

C
C
C

DO 50 K=I,NP2

50 VCV (IND) =VCV (IND) + (X (K, I )*X (K,J) -XM (I) *XM (J))

DO 60 I=I,NP3

60 VCV(I) =VCV(I)/FLOAT (NP2-1)

PRINT*,' COV. MATRIX FOUND '

INTERNAL CHECKING FOR ALGORITHM ACCURACY

DO 80 I=I,NPI

IND=I* (I+l)/2

IF(VCV(IND) .LT.0.0)GO TO 70

GO TO 80

70 WRITE (*,2) I,VCV(IND)
2 FORMAT('ACCURACY OF ALGORITHM IS POOR AT I ='

+' WHERE VCV(I,I) = ',E15.7)

VCV (I) =-VCV (I)

IFLAGI=IFLAGI+I

80 CONTINUE

,I5,

PRINT THE COMMENTS FOR ACCURACY

90

3

4

IF(IFLAGI.GT.0)GO TO 90

PRINT*, ' POSITIVE VARIANCES CHECK DONE '

WRITE (* 4)#

GO TO I00

WRITE (*, 3)IFLAGI

FORMAT(' THERE ARE ',I5,' VARIANCES LESS THAN 0.0 ')

FORMAT(' ALL VARIANCES ARE ">= 0.0", ACCURACY IS GOOD')

SEND THE RESULTS TO OUTPUT DATA FILE

I00 DO II0 I=I,NPI/NF3

II0 WRITE (12, 5) (XM(J), J=l+ (I-l) *NF3, I*NF3)

5 FORMAT (5E15.7)

DO 120 I=I,NP3/NF3

120 WRITE (12, 5) (VCV (J), J=l+ (I-l) *NF3, I*NF3)

STOP

END

MV 00510

MV 00520

MY 00530

MY 0O54O

MY 00550

MV 00560
MV 00570

00580
MV 00590

MY 00600

MV 00610

MV 00620

MV 00630

MV 00640

MY 00650
MV 00660

MV 00670

MY 00680

MY 00690

MV 00700
MV 00710

MV 00720

MV 00730

MV 00740

MV 00750

MV 00760

MV 00770

MV 00780

MV 00790

MY 00800
MV O081O

MV 00820

MV 00830

MV 00840

MV 00850
MV 00860

MV 00870

MY 00880

C

C

C

C

C

C

C

C

C

PROGRAM EV

PARAMETER (NPI=I00, NP3=NPI* (NPI+I)/2, NP5=NP3+NPI,

+NF2=I0, NF3=5)

REAL XM (NPI) ,VCV (NP3) ,VCVF (NPI, NPI) ,D (NPI),

+Z (NPI, NPI) ,WK2 (NP5)

REAL TRACE, SUM

DATA JOB2, IFLAGI, SUM, TRACE/2, 0, 2*0.0/

NPI

NP3

N_5

XM

VCV

VCVF

D

: RAW DATA DIMENSIONALITY
: TOTAL NUMBER OF ELEMENTS FOR VCV

: DIMENSION FOR PERFORMANCE INDEX MATRIX WK2

: MEAN VECTOR

: COVARIANCE MATRIX ( SYMMETRIC STORAGE MODE )

: COVARIANCE MATRIX ( FULL STORAGE MODE )

: EIGENVALUE

EV

EV

EV

EV

EV

EV

EV

EV

EV

Ev

EV
EV

EV

EV

EV

EV

00010

00020

00030

00040

00050
00060

00070

00080

00090

00100
00110

00120

00130

00140

00150

00160
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C
C
C

C
C
C

Z
_K2

: EIGENVECTOR

: PERFORMANCE INDEX MATRIX

ii : INPUT MV FILE ; 12 : OUTPUT EV FILE

OPEN (I1)

OPEN (12)
REWIND ii

REWIND 12

READ IN MEAN VECTOR AND COVARIANCE MATRIX

DO I0 I=I,NPI/NF3

i0 READ (Ii, *) (XM (J), J=l+ (I-l) *NF3, I*NF3)

1 FORMAT (5E15.7)

DO 20 I=I,NP3/NF3
20 READ (Ii, *) (VCV (J), J=l+ (I-l) *NF3, I*NF3)

CALL VCVTSF (VCV, NPI, VCVF, NPI )

30

FIND TRACE, EIGENVALUES AND EIGENVECTORS OF THE COVARIANCE MATRIX

DO 30 I=I,NPI

TRACE=TRACE+VCVF (I, I )
CALL EIGRS (VCV, NPI, JOB2, D, Z, NPI,WK2, IER)

PRINT THE PERFORMANCE INDEX AND ACCURACY COMMENTS

IF(IER.NE.0.OR.WK2(1).GE.I.0)GO TO 40

WRITE (*, 3) IER, WK2 (I)
GO TO 50

40 WRITE (*, 2) IER, WK2 (I)

2 FORMAT(' PERFORMANCE OF "EIGRS" IS POOR,

+' WK2(1) =',E15.7)
3 FORMAT(' PERFORMANCE OF "EIGRS" IS GOOD,

+' WK2(1) =',E15.7)

IER =' I5,f

IER =' , i5,

INTERNAL CHECKING FOR ACCURACY

80

5

6

50 DO 70 I=I,NPI

IF(D(I) .LE.0.0)GO TO 60

GO TO 70

60 WRITE (*, 4) I,D (I)
4 FORMAT(' EIGEN VALUE IS "< = 0.0" AT I =',

+' WHERE D(I) =',E15.7)
IFLAGI=IFLAGI+I

70 CONTINUE

IF(IFLAGI.GT.0)GO TO 80

WRITE (*, 6)
GO TO 90

WRITE (*, 5)IFLAGI

FORMAT(' THERE ARE',I5, '

I5,

NEGATIVE OR ZERO EIGEN VALUES

FORMAT (' ALL EIGEN VALUES ARE GREATER THAN ZERO ')

,)

FIND THE SUM OF THE EIGENVALUES AND PRINT THE ACCURACY COMMENTS

90 CALL VABSMF (D,NPI, I, SUM)

IF (ABS (TRACE-SUM) .GT. i. 0E-I) GO TO I00

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV
EV

EV

EV

EV
EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV

EV
EV

EV

EV

EV

EV

00170

00180

00190

00200

00210

00220

00230

00240

00250

00260

00270

00280

00290

00300

00310

00320

00330

00340
00350

00360

00370

00380

00390
00400

00410

00420

00430

00440

0045O

00460

00470

00480

00490

00500

00510

00520

00530

00540

00550

00560

00570

00580

00590

00600

00610

00620

00630

00640

00650

00660

00670

00680

00690

00700

00710

00720

00730
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C
C
C

WRITE (*, 8)TRACE, SUM
GO TO ii0

I00 WRITE (*, 7)TRACE, SUM

7 FORMAT(' ACCURACY OF "EIGRS" IS POOR, TRACE =',E15.7,
+' SUM =',E15.7)

8 FORMAT(' ACCURACY OF "EIGRS" IS GOOD, TRACE =',E15.7,
+' SUM =',E15.7)

SEND THE RESULTS TO THE OUTPUT DATA FILE

ii0 WRITE (12, 9) TRACE, SUM
9 FORMAT (2E15.7)

DO 120 I=I,NPI/NF3

120 WRITE (12, I) (D (NPI+I-J), J=l+ (I-l) *NF3, I*NF3)

DO 130 J=I,NPI

DO 130 I=I,NPI/NF3

130 WRITE (12, I) (Z (K,NPI+I-J) ,K=I+ (I-l) *NF3, I*NF3)
STOP

END

EV 00740

EV 00750

EV 00760

EV 00770

EV 00780
EV 00790

EV 00800

EV 00810

EV 00820
EV 00830

EV 00840
EV 00850
EV 00860

EV 00870

EV 00880
EV 00890
EV 00900

EV 00910

EV 00920

C
C
C
C
C
C
C
C
C
C
C

C
C
C

C

PROGRAM NOLBS

PARAMETER (NPI=100, NTERM=6, NV=50, NZ I=NPI*NV, NI=I, N2=I 00)

FOR FSS VEGETATION DATA : N1 = I; N2 = i00

FOR SOIL DATA : N1 = 4; N2 = 192

BS 00010

BS 00020

BS 00030

BS 00040

BS 00050

BS 00060

FOR SOIL DATA ( FROM EFFECTIVE WAVELENGTH 0.52 TO 2.32UM:180 DIM )BS 00070

NI=I, N2=180 BS 00080

REAL X(NPI,NTERM),AVE(NPI),SI(NPI),Z(NPI,NV)
DATA Z/NZI*0.0/

NPI :

NTERM :

NV

N1 :

N2 :

X

AVE

S1

Z

BS 00090

BS 00100

BS 00110

BS 00120

RAW DATA DIMENSIONALITY BS 00130

TOTAL NUMBER OF OPTIMAL FUNCTIONS USED IN THE ALGORITHM BS 00140

PRESET MAX NUMBER OF N.O.L. BANDS, INCREASE IT IF NEEDED BS 00150
THE STARTING WAVELENGTH POINT BS 00160
THE ENDING WAVELENGTH POINT

: EIGENVECTOR ( INPUT )

: AVERAGE OF THE FIRST 'NTERM' EIGENVECTORS

: SIGNED VERSION OF AVE(NPI)

: DESIRED N.O.L. BAND FEATURES ( OUTPUT )

ii : INPUT EIGENVECTOR FILE; 12 : OUTPUT N.O.L. BAND FILE

OPEN (iI )

OPEN (I2 )
REWIND II

REWIND 12

READ (II, *) Xl, X2

DO 10 I=I,NPI/5

I0 READ (II, *)Xl, X2, X3, X4, X5

BS 00170

BS 00180

BS 00190

BS 00200

BS 00210

BS 00220

BS 00230

BS 00240

BS 00250
BS 00260

BS 00270

BS 00280

BS 00290

BS 00300

BS 00310

BS 00320

BS 00330
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C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C
C

READ IN EIGENVECTORS

DO 20 ITERM=I,NTERM

DO 20 J=I,NPI/5

20 READ (Ii, *) (X (I, ITERM), I=l+ (J-l) *5, J*5)

FIND THE AVERAGE OF THE FIRST 'NTERM' EIGENVECTORS AND

ITS SIGNED VERSION

DO 40 J=I,NPI

AVE (J)=o. o
DO 30 ITERS_I,NTERM

30 AVE (J) =AVE (J) +X (J, ITERM)/FLOAT (NTERM)

IF(NPI.NE.100)GO TO 35

IF (J. GE. 45 .AND. J.LE. 54 )AVE (J) =0.0

IF (J. GE. 70 .AND. J.LE. 79) AVE (J) =0.0

35 IF (AVE (J) .LT.0.0) S1 (J)=-i.0

IF (AVE (J) .GT.0.0) S1 (J)=i.0

IF (AVE (J) .EQ.0.0) S1 (J)=0.0
40 CONTINUE

THE NEXT 3 LINES CAN BE USED TO PLOT AVE (I) AND S1 (I)

DO 50 I=I,NPI

50 WRITE(12,51)AVE(I),I,SI (I)

51 FORMAT (El5.7, I5, F5.0)

IVEC=I

Z (NI, IVEC)=ABS (SI (NI))

FIND N.O.L. BAND FEATURES FROM S1

DO 60 I=NI+I,N2

IF (NPI .NE.100) GO TO 55

IF(I.GE.45.AND.I.LE.54)GO TO 60

IF (I.GE.70.AND.I.LE.79)GO TO 60

55 IF(S1 (I-l) .NE.SI (I)) IVEC=IVEC+I

WRITE (12, *) I, IVEC

IF(IVEC.GE.NV)GO TO 120

Z (I,IVEC)=ABS (SI (I))
60 CONTINUE

NORMALIZE THE FEATURES AND SEND THEM TO THE OUTPUT FILE

DO 100 J=l, IVEC
XNI=0.0

DO 70 I=I,NPI

70 XNI=XNI+Z (I, J) *Z (I, J)

DO 80 I=I,NPI

80 Z (I, J) =Z (I, J)/SQRT (XNI)

DO 90 II=I,NPI/5

90 WRITE (12, 91) (Z (I, J), I=l+ (Ii-I)'5, Ii'5)

91 FORMAT (5E15.7)
I00 CONTINUE

120 PRINT*,' TOTAL NUMBER OF N.O.L. BAND FEATURES =',IVEC
STOP

END

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS
BS

BS

BS
BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS

BS
BS

BS

BS

BS

BS

BS

BS
BS

BS

BS

BS

BS

BS
BS

BS

BS

BS

BS

BS

BS

00340

00350

00360

00370

00380

00390

00400

00410

00420

00430

00440

00450

00460

00470

00480

00490

00500

00510

00520

00530

00540

00550
0O56O

0O570

00580

00590

00600

00610

00620

00630

00640

00650

00660

00670

00680

00690
00700

00710

00720

00730
00740

00750

00760

00770

00780

00790

00800

00810

00820

00830

00840

00850

00860

00870

00880
00890
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C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

PROGRAM WALSH WAL00010
WAL00020

THIS PROGRAM IS USED TO GENERATE THE FIRST 64 100-DIM. WALSH FUN. WAL00030

IN THIS PROGRAM WE SET Wl=0.1 AND W2=-0.1 SUCH THAT NORM(W)=1.0 WAL00040

NPI = i00, M = 6 , NF4 = 5 USED FOR 64 100-DIM WALSH FUNCTIONS WAL00050
WAL00060

PARAMETER (NPI=I00, M=6, NTVEC=2**M, NMAX=2 ** (M-I),

+WI=0. I, W2=-0. i,NF4=5, NP5=NPI/2, NP6=NPI/4)
REAL Z (NPI, NTVEC), ZWI (NPI, NMAX), ZW2 (NPI, NMAX)

INTEGER NZERO (NTVEC)

NPI

M

NTVEC

W1

W2

NF4

Z
ZWI

ZW2

NZERO

: DIMENSIONALITY OF WALSH FUNCTION
: TOTAL NUMBER OF WALSH FUNCTIONS IS 2**M

: TOTAL knJMBER OF WALSH FUNCTIONS

: THE NORMALIZED LENGTH OF 100-DIM. WALSH FUNCTION

: THE NEGATIVE OF W1

: OUTPUT FORMAT USE

: RESULTS OF WALSH FUNCTIONS ( OUTPUT )
: INTERMEDIATE MATRIX FOR WALSH FUNCTION GENERATION

: INTERMEDIATE MATRIX FOR WALSH FUNCTION GENERATION

: CHECKING VECTOR FOR AXIS CROSSINGS OF WALSH FUNCTIONS

SET UP THE FIRST 4 WALSH FUNCTIONS

DATA ((Z(I,J),I=I,NPI),J=I,4)/NPI *WI, NP5*WI,NP5*W2,

+NP6*WI,NP5*W2,NP6*WI, NP6*WI,NP6*W2,NP6*WI,NP6*W2/

OPEN (ii)
REWIND ii

STORE THE THIRD AND FOURTH WALSH FUNCTIONS

DO 10 J=l,2

DO I0 I=I,NPI

i0 ZWI(I,J)=Z(I,2+J)
PRINT*,'IM = 0,1,2, SEQ : Z(I,I),Z(I,2),ZWI(I,I),ZWI(I,2)'

DO 20 I=I,NPI
20 WRITE(*,*)I,Z(I,I),Z(I,2),ZWI(I,I),ZWI(I,2)

GENERATE THE FIRST 2**M WALSH FUNCTIONS

DO 70 IM=3,M

K=2 ** (IM-I)

DO 30 IK=I,K-I,2

IKM= (IK+I)/2

DO 30 I=I,NP5

ZW2 (I, IK)=ZWI (2"I, IKM)

30 ZW2 (NP5+I, IK) = ((-i.)** (IKM+I))*ZWI (2"I, IKM)

DO 40 IK=2,K, 2

IKM=IK/2

DO 40 I=I,NP5

ZW2 (I, IK)=ZWI (2"I, IKM)

40 ZW2 (NP5+I, IK) =( (-i.)** (IKM))*ZWI (2"I, IKM)
DO 50 IK=I,K

DO 50 I=I,NPI

Z (I, K+IK) =ZW2 (I, IK)

50 ZWI (I, IK) =ZW2 (I, IK)

WAL00070

_00080
WAL00090

WAL00100

WAL00110

WAL00120

WAL00130
WAL00140

WAL00150

WAL00160

WAL00170

WAL00180

WAL00190

WAL00200

WAL00210

WAL00220

WAL00230

WAL00240

WAL00250

WAL00260

WAL00270

WAL00280

WAL00290

WAL00300

WAL003i0

WAL00320

WAL00330

WAL00340

WAL00350

WAL00360

WAL00370

WAL00380

WAL00390
WAL00400

WAL00410

WAL00420

WAL00430

WAL00440

WAL00450

WAL00460

WAL00470

WAL00480

WAL00490

WAL00500

WAL00510

WAL00520

WAL00530
WAL00540

WAL00550

WAL00560

WAL00570



112

C

C

C

C
C
C
C
C

C

C

C

C

C

C

C
C

IF(IM.GE.6)GO TO 70

WRITE (*, I) IM, K
1 FORMAT(' IM = ',I2,', THE SEQ IS ZW2(I,J), J=I,K=',I3)

DO 60 I=I,NPI

60 WRITE (*, 3)I, (ZW2 (I, J), J=l, K)

3 FORMAT (I4, 2X, 16F4. i)

70 CONTINUE

8O

CHECK TOTAL _ER OF AXIS CROSSINGS FOR EACH WALSH FUNCTIONS

DO 80 J=I,NTVEC

DO 80 I=I,NPI-I

IF (Z (I, J). NE. Z (I+l, J) )NZERO (J)=NZERO (J)+I

CONTINUE

THE FOLLOWING 2 STATEMENTS CAN BE USED FOR INTERNAL CHECKING

DO 85 II=I,NTVEC/8

85 WRITE (ii, 86) (NZERO (J), J=l+ (II-l) *8, II'8)

86 FORMAT (818)

WRITE (*, *) (NZERO (J), J=l, NTVEC)

DO 90 J=I,NTVEC

IF (NZERO(J) .NE. (J-l))GO TO 200
90 CONTINUE

140

SEND THE RESULTS TO OUTPUT FILE

DO 140 J=I,NTVEC

DO 140 K=I,NPI/NF4
WRITE(II,4) (Z(I,J),I=I+(K-I)*NF4,K*NF4)

CHOOSE FORMAT(10F8.1) IF NF4=I0 INSTEAD OF 5

4 FORMAT (10F8. I)

4 FORMAT (5E15.7)

200 STOP

END

wAL00580

WAL00590

WAL00600

WAL00610

WAL00620

WAL00630

WAL00640

WAL00650

WAL00660

WAL00670

WAL00680

WAL00690

WAL00700

WAL00710

WAL00720

WAL00730
WAL00740

WAL00750

WAL00760

WAL00770

WAL00780

WAL00790

WAL00800

WAL00810

wAL00820

WAL00830

WAL00840

WAL00850

WAL00860

WAL00870

WAL00880

WAL00890

WAL00900

WAL00910

WAL00920

WAL00930

WAL00940

C

C
C
C

C
C
C
C
C
C
C
C

PROGRAM INFCLIP

PARAMETER (NP i=i 00, NTERM=I 6, IEV=I )

REAL X (NPI)

NPI

NTERMS :

X

IEV : INPUT FILE READING INDEX ( CHOOSE EITHER 1 OR 0 )

IEV = 1 IF INPUT FILE CONTAINS TRACE, EIGENVALUES AND THEIR SUM

IEV = 0 IF INPUT FILE CONTAINS ONLY EIGENVECTORS

Ii : INPUT EV FILE; 12 : OUTPUT INF. CLIPPED OPT. FEATURE FILE

INF00010

INF00020

INF00030

INF00040

RAW DATA DIMENSIONALITY INF00050

TOTAL NUMBER OF OPTIMAL FUNCTIONS USED IN THE ALGORITHMINF00060

INPUT AND OUTPUT VARIABLE INF00070
INF00080

INF00090

INF00100

INF00110

INF00120

INF00130

INF00140

INF00150
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C

C

C

C

C
C

i0

OPEN (Ii )

OPEN (12)

REWIND Ii

REWIND 12

FIND NORMALIZATION FACTOR

IF (NPI. EQ. I00) XNPI=FLOAT (NPI-20)

IF (NPI. EQ. 200) XNPI=FLOAT (NPI)

READ INPUT EIGENVECTORS FOR TWO POSSIBLE CASES

IF(IEV.EQ.0)GO TO 15

READ (ii, *) Xl,X2

DO i0 I=I,NPI/5

READ (II,*)Xl,X2,X3, X4,X5

FIND INFINITE CLIPPED VERSION FOR EVERY OPTIMAL

15 DO 50 ITERM=I,NTERM

DO 20 J=I,NPI/5

20 READ(II,*) (X(I),I=I+(J-I)*5, J*5)

XNI=I./SQRT (XNPI)

DO 30 J=I,NPI

IF (NPI.EQ.100.AND. J.GE. 45.AND.J.LE. 54)X (J)=0.0
IF (NPI. EQ. I00. AND. J. GE. 70. AND. J. LE. 79) X (J) =0.0

IF (NPI .EQ. 200 .AND. J. GE. 1 .AND. J. LE. 3)X (J) =0.0

IF (NPI .EQ. 200 .AND. J. GE. 193 .AND. J.LE. 200) X (J) =0.0

IF (X (J). GT. 0.0) X (J) =XNI

IF (X (J). LT. 0.0 )X (J) =-XNI

30 CONTINUE

40

41

50

SEND THE RESULT TO THE OUTPUT FILE

DO 40 J=I,NPI/5

WRITE (12, 41) (X (I), I=l+ (J-l) *5, J*5)

FORMAT (5E15.7)

CONTINUE

STOP

END

FUNCTION

INF00160

INF00170

INF00180

INF00190

INF00200

INF00210
INF00220

lh!F00230

INF00240
INF00250

INF00260

INF00270

INF00280

INF00290
INF00300

INF00310

INF00320

INF00330

INF00340

INF00350

INF00360

INF00370

INF00380

INF00390
INF00400

INF00410

INF00420

INF00430

INF00440

INF00450

INF00460

INF00470

INF00480

INF00490

INF00500

INF00510

INF00520

INF00530

INF00540

INF00550

PROGRAM OLBS

PARAMETER (NPI=I00, NTERM=6, NV=I 20, NZI=2*NV, NZ2=NPI*NV,

+NI=I, N2=I00, WI=0.40, DW=0.02, NVX=40, NV2=NV*NV)

REAL X (NPI,NTERM) ,SI (NPI) ,Z (NPI, NV) ,TI (NV),

+TEST (NPI, NV), A (NPI, NVX)
INTEGER NX (NTERM), NEDGE (2,NV), NWID (NV), NRANK (NV), NREP (NV),

+MREP (NV)
DATA NX, Z,NEDGE, NWID/NTERM*0, NZ2*0.0, NZI*0, NV*0/

DATA NREP, TEST/NV*I, NZ2*0.0/

NPI : RAW DATA DIMENSIONALITY

OLB00010

OLB00020

OLB00030

OLB00040

OLB00050

OLB00060

OLB00070

OLB00080
OLB00090

OLB00100

OLB00110
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C
C
C

C
C
C

NTERM
NV
Nl

N2

W1

DW
NVX

X

Sl
Z

T1

TEST

A

NX(K)
NEDGE

NWID
NRANK

NREP

MREP

: PRESET TOTAL NUMBER OF L.D. BANDS,

: STARTING WAVELENGTH POINT

: ENDING WAVELENGTH POINT

: STARTING WAVELENGTH IN MICRO METER

: SPECTRAL RESOLUTION ( UM )

: PRESET TOTAL NUMBER OF L.I. BANDS,

TOTAL NUMBER OF OPTIMAL FUNCTIONS USED IN THE ALGORITHM OLB00120
INCREASE IT IF NEEDEDOLB00130

OLB00140

OLB00150

( UM ) OLB00160
OLB00170

INCREASE IT IF NEEDEDOLB00180

INPUT EIGENVECTOR MATRIX

SIGNED VERSION OF THE EIGENVECTOR

: L.D. BAND FEATURES

: TEMPORARY STORAGE VECTOR

: OUTPUT O.L. BAND FEATURES ( L.I. FEATURES )

: INTERMEDIATE MATRIX FOR RANK TEST

: TOTAL NO. OF L.D. BANDS FOR THE FIRST K EIGENVECTOR(S)

: BAND EDGES FOR EACH L.D. BANDS

: BAND WIDTH FOR EACH L.D. BANDS
: POSITIONS OF THE RANKED FEATURES BY THE WIDTHS

: INDEX SHOWS IF THE L.D. BANDS ARE REPEATED

: INDEX SHOWS IF THE BANDS ARE L.I. BANDS

NREP = 1 IF NON-REPEATED BAND ; NREP = 0 IF REPEATED

MREP = 1 IF L.I. BAND ; MREP = 0 IF L.D.

ii : INPUT EIGENVECTOR FILE

12 : FIRST OUTPUT FILE .... L.Do AND L.I.

13 : SECOND OUTPUT FILE .... DESIRED O.L.

OPEN(II)

OPEN(12)

OPEN(13)
REWIND ii

REWIND 12

REWIND 13

READ IN EIGENVECTORS

BAND INFORMATION

BAND FEATURE

READ (Ii, *)Xl, X2

DO I0 I=I,NPI/5

i0 READ (II, *)Xl, X2, X3, X4, X5

DO 20 J=l, NTERM
DO 20 I=I,NPI/5

20 READ(II,*) (X(K,J),K=I+(I-I)*5, I*5)

FIND THE L.D. BAND FEATURES FROM FIRST 'NTERM' OPTIMAL FUNCTIONS

IVEC=I

DO 70 J=l, NTERM

DO 40 I=I,NPI
IF (X (I,J) .LT. 0.0) S1 (I)=-l. 0

IF (X (I, J) .GT. 0.0) S1 (I)=+i. 0

IF (X (I,J) .EQ.0.0) S1 (I)=0.0

IF(NPI.NE.100)GO TO 40

IF (I.GE.45.AND.I.LE. 54) S1 (I) =0.0
IF (I.GE. 70 .AND.I.LE. 79) S1 (I)=0.0

CONTINUE

Z (NI, IVEC)=ABS (SI (NI))

4O

OLB00190

OLB00200

OLB00210

OLB00220

OLB00230

OLB00240

OLB00250

OLB00260

OLB00270

OLB00280
OLB00290

OLB00300

OLB00310

OLB00320

OLB00330

OLB00340

OLB00350

OLB00360

OLB00370

OLB00380

OLB00390

OLB00400

OLB00410

OLB00420

OLB00430

OLB00440

OLB00450

OLB00460

OLB00470

OLB00480

OLB00490

0LB00500

OLB00510

OLB00520

OLB00530

OLB00540

OLB00550

OLB00560

OLB00570

OLB00580

0LB00590

OLB00600

OLB00610

OLB00620

OLB00630

0LB00640

OLB00650

OLB00660

OLB00670

0LB00680
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C

C

C

C

C

C

DO 60 I=NI+I,N2

IF (NPI .NE.100) GO TO 50

IF(I.GE.45.AND.I.LE.54)GO TO 60

IF(I.GE.70.AND.I.LE.79)GO TO 60

50 IF(S1 (I-l) .NE.SI (I)) IVEC=IVEC+I

IF(IVEC.GT.NV)GO TO 350

Z (I, IVEC)=ABS (SI (I))

60 CONTINUE

NX (J)=IVEC
IVEC=IVEC+I

70 CONTINUE

80

90

I00

i01

Ii0

FIND THE BAND EDGES AND BAND WIDTH FOR EACH L.D. BAND FEATURES

NVTOT=NX (NTERM)

DO 90 J=l, NVTOT

II=0

I2=0

DO 80 I=I,NPI

CKI=Z (I, J)

IF(CKI.EQ.0.0)GO TO 80

IF (CKI.NE.0.0.AND.II.EQ. 0) Ii=I

IF (CKI.NE.0.0.AND.II.NE. 0) I2=I

CONTINUE

IF (I2.EQ. 0) I2=Ii

NEDGE (I, J) =Ii

NEDGE (2, J) =I2

NWID (J) =I2-Ii+l

CONTINUE

FIND THE WAVELENGTH EDGES AND SEND THEM TO THE FIRST OUTPUT FILE

DO I00 J=I,NTERM

WRITE (12, *) J

IF (J.EQ. i) NSI=NX (J)

IF (J.NE. I)NSI=NX (J) -NX (J-l)

DO 100 I=I,NSI

IF (J. EQ. I) NS2=I

IF (J.NE. i) NS2=I+NX (J-l)

II=NEDGE (i, NS2)

12=NEDGE (2, NS2)

XWI=WI +FLOAT (Ii-l) *DW

XW2=WI +FLOAT (12 ) *DW

WRITE (12, I01) NS2, I, NEDGE (I, NS2), NEDGE (2, NS2), XWI, XW2, NWID (NS2)

CONTINUE

FORMAT (215, 2X, I3,1X,'-',I3,2X,'', ',F5.2,1X,'-',F5o2, I5)

PRINT*, 'TOTAL NUMBER OF BANDS IS = ',NVTOT

RANK THE L.D. BAND ACCORDING TO THEIR WIDTHS IN DESCENDING ORDER

AND SEND THE RESULTS TO THE FIRST OUTPUT FILE

DO ii0 I=I,NV

T1 (I) =FLOAT (NWID (I))

DO 120 I=I,NVTOT

CALL VABMXF (TI (I) ,NV, I, IMAX,BIG)

NRANK (I)=IMAX
WRITE (12, *) I, NRANK (I), NEDGE (I, IMAX), NEDGE (2, IMAX), NWID (IMAX)

OLB00690

OLB00700

OLB00710

0LB00720

OLB00730

0LB00740

0LB00750

0LB00760

0LB00770

OLB00780

OLB00790

OLB00800

OLB00810

OLB00820

0LB00830

0LB00840

OLB00850

OLB00860

OLB00870

OLB00880

OLB00890

OLB00900

OLB00910

OLB00920

OLB00930

OLB00940

OLB00950

0LB00960

OLB00970

OLB00980

OLB00990

OLB01000

OLB01010

OLB01020

OLB01030

OLB01040

OLB01050

OLB01060

OLB01070

OLB01080

OLB01090

OLB01100

OLB01110

OLB01120

OLB01130

OLB01140

OLB01150

OLB01160

OLB01170

OLB01180

OLB01190

OLB01200

OLB01210

OLB01220

OLB01230

OLB01240

OLB01250
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C
C
C

C
C
C

120 TI (IMAX) =0.0

130

CHECK IF THE L.D. BAND IS REPEATED. IF IT IS, SET NREP(1) = 0

DO 140 I=I,NVTOT

DO 130 J=I,NVTOT

IF (I.EQ. J) GO TO 130

II=NRANK (I)

12=NRA/qK (J)

13=NWID (iI)

14=NWID (I2)

IF(I3.NE.I4)GO TO 130

ISTART=NEDGE (i, Ii)

JSTART=NEDGE (i, 12 )

IEND=NEDGE (2, I1)

JEND=NEDGE (2,12 )

IF (ISTART. EQ. JSTART. AND. IEND. EQ. JEND. AND. I. GT. J)NREP (I) =0

CONTINUE

IF(NREP(I).EQ.0)GO TO 140

IX=NRANK (I)

THE FOLLOWING WRITE STATEMENT CAN BE USED FOR INTERNAL CHECKING

WRITE (12,131) I,_P (I),NRANK (I) ,EDGE (i, IX) ,EDGE (2, IX) ,NWID (IX)
131 FORMAT(314,5X, I4,' -',I4,5X, I4)
140 CONTINUE

150

160

170

180

FIND TOTAL NUMBER OF NON-REPEATED L.D. BAND

NDIFF=0

DO 150 I=I,NVTOT

IF(NREP(I).EQ.I)NDIFF=NDIFF+I

MREP(I)=NREP(I)

PRINT*,'TOTAL NUMBER OF NON-IDENTICAL BANDS IS =',NDIFF

FIND L.I. BAND BY CHECKING THE MATRIX RANK

ILI=I

JWID=I

DO 300 J=I,NVTOT

IF(NREP(J) .EQ.0)GO TO 300

JR=NRANK (J)
DO 160 I=I,NPI

TEST (I,ILI) =Z (I,JR)

DO 170 KI=I,NPI

DO 170 KJ=I,ILI

A(KI,KJ)=TEST(KI,KJ)

REDUCE THE MATRIX A TO ITS ECHELON FORM

CALL ECHEL (A,NPI,NVX,NPI, ILl)
IEV=0

DO 190 KI=I,NPI

DO 180 KJ=I,ILI

IF (A (KI, KJ) .NE. 0.0) IEV=IEV+I

IF(A(KI,KJ) .NE.0.0)GO TO 190
CONTINUE

OLB01260

OLB01270

OLB01280

OLB01290

OLB01300

OLB01310

OLB01320

OLB01330

OLB01340
OLB01350

OLB01360

OLB01370

OLB01380

OLB01390
OLB01400

OLB01410

OLB01420

OLB01430

OLB01440

OLB01450

OLB01460

OLB01470

OLB01480

OLB01490

OLB01500
OLB01510

OLB01520

OLB01530

OLB01540

OLB01550
OLB01560

OLB01570

OLB01580

OLB01590

OLB01600

OLB01610

0LB01620

OLB01630

OLB01640

OLB01650

OLB01660

OLB01670
OLB01680

OLB01690

OLB01700

OLB01710

0LB01720

OLB01730
OLB01740

OLB01750

OLB01760

OLB01770
OLB01780

OLB01790
OLB01800

OLB01810

OLB01820
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C

C
C

C

C

C
C

C

C

C

C

190 CONTINUE

SEND THE RANK INFORMATION TO THE FIRST OUTPUT FILE

WHERE 'IEV' IS THE RANK AND 'ILI' IS TOTAL NUMBER OF BANDS TESTED

WRITE(12,*)'IEV=',IEV,'', ILI=',ILI,'AT J=',J

IF (IEV.LT.ILI)WRITE (12,*) 'IEV.LT.ILI AT J=', J

IF(IEV.LT.ILI)GO TO 200

IF RANK IS EQUAL TO TOTAL NO. OF BANDS,

IF (IEV. EQ. ILI) ILI=ILI+I
GO TO 300

IF RANK IS LESS THEN TOTAL NO. OF BANDS,
ELIMINATE THE WIDEST L.D. BAND

200 DO 250 JXLD=I,ILI

DO 210 KJ=I,ILI

DO 210 KI=I,NPI

210 A (KI, KJ) =TEST (KI, KJ)

DO 220 KI=I,NPI

220 A (KI, JXLD) =TEST (KI, ILI)
JLI=ILI-I

CALL ECHEL (A,NPI,NVX,NPI, JLI)
IEV=0

DO 240 KI=I,NPI

DO 230 KJ=I,JLI

IF (A (KI, KJ) .NE. 0.0) IEV=IEV+I

IF(A(KI,KJ) .NE.0.0)GO TO 240
230 CONTINUE

240 CONTINUE

PRINT*,'IEV=',IEV,'," ILI=',ILI,'AT J=',J

IF(IEV.LT.ILI)PRINT*,'IEV.LT.ILI AT J=',J

IF (IEV. EQ. JLI )J2LD=JXLD

IF(IEV.EQ.JLI)GO TO 260
250 CONTINUE

260 II=0

I2=0

DO 270 KI=I,NPI

CKI=TEST (KI, J2LD)

IF(CKI.EQ.0.0)GO TO 270

IF (CKI.NE. 0.0.AND. II.EQ. 0) II=KI

IF (CKI .NE. 0.0 .AND. Ii .NE. 0) I2=KI
270 CONTINUE

IF (I2.EQ.0) I2=II

DO 275 KI=I,NVTOT

IF (MREP (KI) .EQ. 0)GO TO 275

MAX=NRANK (KI)

MEDGEI =NEDGE (I,MAX)

MEDGE2=NEDGE (2,MAX)

IF (Ii. EQ.MEDGEI .AND. I2. EQ. MEDGE2) JILD=KI

IF (Ii .EQ.MEDGEI .AND. I2. EQ.MEDGE2) GO TO 280
275 CONTINUE

280 MREP (JILD)=0

SEND THE POSITION OF THE WIDEST L.D. BAND FEATURE

0LB01830

OLB01840

OLB01850

OLB01860

OLB01870

OLB01880

OLB01890
OLB01900

OLB01910

TEST THE NEXT WIDEST BAND OLB01920

OLB01930

OLB01940

OLB01950

OLB01960

OLB01970

OLB01980

OLB01990

OLB02000

OLB02010

OLB02020

OLB02030

OLB02040

0LB02050

OLB02060

OLB02070

OLB02080

0LB02090
OLB02100

OLB02110

OLB02120

OLB02i30

0LB02140

OLB02150

OLB02160

OLB02170

OLB02180

OLB02190

OLB02200

OLB02210

OLB02220

OLB02230
OLB02240

OLB02250

OLB02260

OLB02270

OLB02280

OLB02290

OLB02300

OLB02310

OLB02320

OLB02330

OLB02340

OLB02350

OLB02360
OLB02370

OLB02380

OLB02390
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C
C

C

C

C

C

C

C

C

C
C

C

TO THE FIRST OUTPUT FILE WHERE :

JILD IS THE POSITION ON THE VARIABLES NREP AND MREP

J2LD IS THE POSITION ON THE RANK CHECKING MATRIX

WRITE(12,*)'J =',J,'; JILD ='

DO 290 JI=J2LD, ILI-I

DO 290 II=I,NPI

290 TEST(II,JI)=TEST(II,J I+I)

300 CONTINUE

310

,JILD,'; J2LD =',J2LD

SEND THE L.I. INDEX TO THE FIRST OUTPUT FILE

PRINT*,'TOTAL NUMBER OF L.I.

DO 310 I=I,NVTOT

WRITE(12,*)I,NREP(I),MREP(I)

BANDS IS =',IEV

NORMALIZE THE O.L. BANDS AND SEND THEM TO THE SECOND OUTPUT FILE

DO 330 J=I,IEV

XNI=0.0

DO 320 I=I,NPI

IF (TEST (I, J). EQo 1 )XNI=XNI + 1

320 CONTINUE

DO 330 I=I,NPI

330 TEST (I, J) =TEST (I, J)/SQRT (XNI)

DO 340 J=I,IEV

DO 340 K=I,NPI/5

JI=IEV-J+I

340 WRITE (13,341) (TEST (I, J), I=l+ (K-l)*5, K*5)

341 FORMAT (5E15.7)

GO TO 360

350 PRINT*, 'TOTAL NUMBER OF BANDS IS OUT OF PRESET LIMIT'

360 STOP

END

SUBROUTINE ECHEL (A, NPI, NVX, NROW, NCOL)

REAL A (NPI, NVX)

THIS SUBROUTINE REDUCES MATRIX A INTO ITS ECHELON FORM

JCOL=I

IROW=I

5 DO 100 I=IROW, NROW

IF(A(I,JCOL).EQ.0.0)GO TO i00

C INTERCHANGE I AND IROW TO GET NONZERO PIVOT

IF(I.EQ.IROW) GO TO 20

DO i0 J=JCOL,NCOL

XI=A (I, J)

A (I, J) =A (IROW, J)

i0 A(IROW, J) =Xl

C NORMALIZE ROW TO GET POSITIVE NUMBER FOR PIVOT

20 IF(A(IROW, JCOL).GT.0o0)GO TO 40

DO 30 J=JCOL,NCOL

30 A(IROW, J)=-A(IROW, J)

40 IF(IROW.GE.NROW) RETURN

C ZERO COLUMN BELOW PIVOT

IROWX=IROW+I

OLB02400

0LB02410

0LB02420

OLB02430

0LB02440

0LB02450

OLB02460

0LB02470

OLB02480

OLB02490

OLB02500

OLB02510

OLB02520

OLB02530

OLB02540

OLB02550

OLB02560

OLB02570

OLB02580

OLB02590

OLB02600

OLB02610

OLB02620

OLB02630

OLB02640

OLB02650

OLB02660

OLB02670

OLB02680

OLB02690

OLB02700

OLB02710

0LB02720

OLB02730

OLB02740

OLB02750

0LB02760

OLB02770

0LB02780

OLB02790

OLB02800

OLB02810

OLB02820

OLB02830

OLB02840

0LB02850

OLB02860

OLB02870

OLB02880

OLB02890

OLB02900

OLB02910

OLB02920

OLB02930

OLB02940

OLB02950

OLB02960
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5O

60

ioo

DO 60 K=IROWX,NROW

XI=A (K, JCOL)

IF(XI.EQ.0.0)GO TO 60

DO 50 J=JCOL,NCOL

A (K, J)=-XI*A (IROW, J) +A (K, J)
CONTINUE

IROW=IROW+I

JCOL=JCOL+ 1

GOTO 5

CONTINUE

IF (IROW. GT. NROW) RETURN

JCOL=JCOL+ 1

GOTO 5

END

OLB02970

OLB02980

0LB02990

OLB03000

OLB03010

OLB03020

OLB03030

OLB03040

OLB03050

OLB03060

OLB03070

OLB03080

OLB03090

OLB03100

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

PROGRAM CLST

PARAMETER(NTERM=I6,MTERM=NTERM*(NTERM+I)/2,NCLS=3,N PI=I00,

+NSET=I,MSET=I,NDSET=I,NTSET=I,NF2=IO,NF3=5,NSMAX=IO00,

+NKLT=O,IEV=O,NLI=I6,VLD=-O.O,NSAMP=IO,NF=NF2)

NKLT = 1 :
NKLT = 0 :

JUST FIND TRANSFORMED DATA XKLT

FIND XKLT AND CLASS STATISTICS

NF = NF2 = I0 USED TO READ (10F8.3) RAW DATA

NF = NF3 = 5 USED TO READ (5E15.7) CANONICAL TRANSFORMED DATA

WHEN : NF = NF3 = 5 --> NPI MUST BE REDUCED TO LOWER DIM.

NTERM = TOTAL NUMBER OF FEATURES (MAY NOT ALL BE NUMERICALLY L.I.

NCLS = TOTOAL NUMBER OF INFORMATION CLASSES

NPI =

IEV =

NLI =

NSMAX =

NSAMP =

CLS00010

CLS00020

CLS00030

CLS00040

CLS00050

CLS00060

CLS00070

CLS00080

CLS00090
CLS00100

CLS00110

CLS00120

)CLS00130
CLS00140

DIMENSIONALITY OF INPUT DATA CLS00150

NPI = RAW DATA DIMENSIONALTY IF USED IN DATA PREPROCESSINGCLS00160

NPI = TRANSFORMED DATA DIMENSIONALTY IF USED IN CAN. ANAL.CLS00170
CLS00180INPUT FEATURE READING INDEX, EITHER 1 OR 0

IEV = 0 IF FEATURE FILE DOES NOT CONTAIN TRACE & EVALUES

IEV = 1 IF FEATURE FILE CONTAINS TRACE & EVALUES

TOTAL NUMBER OF L.I. FEATURES DESIRED

PRESET MAX. NO. OF SAMPLES FOR ONE CLASS

TOTAL NUMBER OF TEST SAMPLES USED TO CHECK POS. DEF.

REAL X (NSMAX, NTERM), Z (NPI, NTERM), RX (NPI),

+TI (NPI), T2 (NPI), T3 (NPI), XT (NPI), XM (NPI), D (NPI),

+XMCT (NTERM, NCLS), XMC (NTERM), W (NPI), T (NPI),

+VCT (MTERM, NCLS ),VC (MTERM), CT (NCLS),

+VCIT (MTERM, NCLS) ,VCI (MTERM), TEST (NTERM, NTERM),

+VCIF (NTERM, NTERM), VCF (NTERM, NTERM),
+VCTF (NTERM, NTERM, NCLS), XMCTF (NTERM, NCLS),

+VCTLI (MTERM, NCLS), XMTLI (NTERM, NCLS),

+WK (NTERM), VCV (MTERM), VEC (NSAMP, NTERM)

INTEGER NBR (6), NST (NCLS, NTSET)

DOUBLE PRECISION DSEED

DATA (NBR(I),I=4,6),W/1,0,0,NPI*I.0/

CLS00190

CLS00200

CLS00210

CLS00220

CLS00230

CLS00240

CLS00250

CLS00260

CLS00270

CLS00280

CLS00290

CLSQO300

CLS00310

CLS00320

CLS00330
CLS00340

CLS00350

CLS00360

CLS00370

CLS00380
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C X =

C Z =

C RX =

C XT =

C XM =

C D =

C XMCT =

C XMC =

C VCT =

C VC =

C VCIT =

C VCI =

C TEST =

C VCTLI =

C XMTLI =

C WK =

C VCV =

C VEC =

C

TRANSFORMED DATA

FEATURES

TEMPORARY STORAGE FOR FEATURES

INPUT DATA

MEAN VECTOR

EIGENVALUES
MEAN VECTOR FOR ALL CLASSES

MEAN VECTOR FOR ONE CLASS

COVARIANCE MATRIX FOR ALL CLASSES

COVARIANCE MATRIX FOR ONE CLASS

INVERSE MATRIX OF ALL CLASS COVARIANCE MATRICES

INVERSE MATRIX OF ONE CLASS COVARIANCE MATRIX

INTERNAL MATRIX INVERSION CHECKING MATRIX

COV. MATRIX FOR ALL CLASSES BY USING ALL L.I. FEATURES

MEAN VECTOR FOR ALL CLASSES BY USING L.I. FEATURES

WORKING SPACE FOR IMSL ROUTINES

COV. MATRIX USED TO TEST ITS POSITIVE DEFINITENESS

GENERATED SAMPLES USED TO TEST POSITIVE DEFINITENESS

C--->>CHOOSE OR TYPE IN THE CORRECT NUMBERS OF SAMPLES IN THE DATA SETS

C

C

CLS00390

CLS00400

CLS00410

CLS00420

CLS00430

CLS00440

CLS00450

CLS00460

CLS00470

CLS00480

CLS00490

CLS00500

CLS00510

CLS00520

CLS00530

CLS00540

CLS00550

CLS00560

CLS00570

CLS00580

CLS00590

CLS00600

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

NSET F1 NP2

1 M2611KI 832
2 M2611K2 1551

3 M2611K3 1477
4 M2614NI 1265

5 M2614N2 1239

6 M2614N3 1444

A B C DACO EXNU RUSE

WW:I41 SF:414 GS:277 760928 76102207 1-1622
WW:658 SF:211 UC:682 770503 77102207 6515-8096

WW:677 SF:643 GS:157 770626 77102207 8097-9691

SW:664 SF:437 NP:I64 770508 77102217 1-1396

SW:787 SF:291 NP:I61 770629 77102217 2777-4141

SW:931 SF:330 NP:I83 770804 77102217 5426-6993

DATA NST/141,414,277,658,211,682,677,643,157/

DATA NST/141,414,277,658,211,682,677,643,157,

+664,437,164,787,291,161,931,330,183/

DATA NST/664,437,164,787,291,161,931,330,183/

DATA NST/141,414,277,658,211,682,677/

DATA NST/587,216,121/

DATA NST/658,211,682/

CLS00610

CLS00620

CLS00630

CLS00640

CLS00650

CLS00660

CLS00670

CLS00680

CLS00690

CLS00700

CLS00710

CLS00720

CLS00730

CLS00740

CLS00750

CLS00760

CLS00770

C
C
C
C
C
C
C
C

THE FOLLOWING DATA 'NST' ARE USED FOR SOIL ORDER DATA SET. 'SO'

NP2=479; MOL ALF EN AR UL IN SP VE H OX UNCLASSIFIED

DATA NST/154, I13, 78, 52, 45, 37, 30, ii, 8, ii, 32/

DATA NST/154, I13, 78, 52, 45, 97/

DATA NST/154,113, 78, 52, 45, 37/

CLS00780

CLS00790

CLS00800

CLS00810
CLS00820

CLS00830

CLS00840

CLS00850

C
C
C
C

C
C
C
C
C

C

THE FOLLOWING DATA 'NST' IS USED FOR SOIL 'OMI' DATA SET

I.E. (I) MOLLISOL, OR (2) ALFISOL, AND GROUP SAMPLES

ACCORDING TO THEIR ORGANIC MATERIAL: % WEIGHT

CLASS 1 TO 6 : NP2 = 255

CLSI : .11% .GE. OM .LE. 1.5% : # 1 -> # 51

CLS2 : 1.5% .GT. OM .LE. 2.0% : # 52 -> # 104

CLS3 : 2.0% .GT. OM .LE. 2.5% : # 105 -> # 138

CLS4 : 2.5% .GT. OM .LE. 3.5% : # 139 -> # 183

CLS5 : 3.5% .GT. OM .LE. 5.0% : # 184 -> # 222

CLS00860

CLS00870

CLS00880

CLS00890

CLS00900

CLS00910

CLS00920

CLS00930

CLS00940

CLS00950
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C
C
C
C
C
C
C
C
C
C
C

CLS6 : 5.0% .GT. OM .LE. I0.12% : # 223 -> # 255 CLS00960

CLS00970

DATA NST/51,54,33,45,39,33/ CLS00980

CLS00990

DATA 'S2A' : ANOTHER TEST GROUPED BY THE SAME OMRANGES AS 'OM2' CD$91000

OM PERCENTAGE : 0, I; 1,2; 2,3; 3,4; 4,6; 6 AND ABOVE CLS01010
CLS01020

DATA NST/26,78,64,32,55/ CLS01030

CLS01040

CLS01050

CLS01060
C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

THE FOLLOWING DATA 'NST' IS USED FOR 'OM2' DATA SET

ACCORDING TO THEIR ORGANIC MATERIAL: % WEIGHT
CLASS 1 TO 6 : NP2 = 514

CLSI : .08% .GE. OM .LE. 1.0% :

CLS2 : 1.0% .GT. OM .LE. 2.0% :

CLS3 : 2.0% .GT. OM .LE. 3.0% :

CLS4 : 3.0% .GT. OM .LE. 4.0% :

CLS5 : 4.0% .GT. OM .LE. 6.0% :

# 1 -> # 82

# 83 -> # 217

# 218 -> # 337

# 338 -> # 391

# 392 -> # 450

CLS6 : 6.0% .GT. OM .LE. 84.79% : # 451 -> # 514

DATA NST/82, 135,120, 54, 59, 64/

DATA NST/82,135,120, 54,123/

DATA NST/44, 31, 18, 23,24, 51,37, 27/
DATA NST/83, 57, 94, 31, 37, 59,103, 26, 24/

DATA NST/103, 26, 24/

CLS01070
CLS01080

cLs0i090

CLS01100

CLS01110

CLS01120
CLS01130

CLS01140

CLS01150

CLS01160

CLS01170

CLS01180

CLS01190

CLS01200

CLS01210

CLS01220

CLS01230
C

C

C

C

C

C

C

C
C

C

C

C

C

THE FOLLOWING DATA 'NST' IS USED FOR SOIL IRON OXIDE 'IO' DATA SETCLS01240

ACCORDING TO THEIR FE203 % WEIGHT
CLASS 1 TO 6 :

CLSI : .02% .GE

CLS2 : 0.4% .GT

CLS3 : 0.6% .GT

CLS4 : 0.8% .GT

CLS5 : 1.2% .GT

CLS6 : 1.6% .GT

NP2 = 467

FE203 LE

FE203 LE

FE203 LE

FE203 LE

FE203 LE

FE203 LE

0.4% : # 1 -> # 102
0.6% : # 103 -> # 175

0.8% : # 176 -> # 244

1.2% : # 245 -> # 349

1.6% : # 350 -> # 401

25.60% : # 402 -> # 467

DATA NST/102, 73, 69,105, 52, 66/

CLS01250
CLS01260

CLS01270

CLS01280

CLS01290

CLS01300

CLS01310

CLS01320

CLS01330

CLS01340

CLS01350

CLS01360

THE FOLLOWING DATA 'NST' IS USED FOR SOIL TEXTURE 'ST' DATA SET
ACCORDING TO THEIR SAND-SILT-CLAY % CONTENT

CLASS i TO 6 : NP2 = 483; DETAILS : SEE FILE (S5L.DATA.CI)

DATA NST/40, 63, 76, 93, 68,143/

CLS01370

CLS01380

CLS01390

CLS01400

CLS01410

CLS01420

CLS01430

THE FOLLOWING DATA 'NST' IS USED FOR S.D. VEGETATION DATA

DATA NST/225, 61, 292, 469, 82,182, 63,103, 39, 39,217, 51,

+393,441,80,88, 88,41,32,26, 118,43,121,44, 45,102,66,89,

+78, 53,147, 39, 24, 42,119, 69, 76, 96,107,154, 28, 19/

CLS01440
CLS01450

CLS01460
CLS01470

CLS01480

CLS01490

CLS01500

C THE FOLLOWING DATA 'NST' IS USED FOR IOWA VEGETATION DATA CLS01510
C CLS01520
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C

C

C

C

DATA NST/514,41, 517,36,32, 621,517,45, 610,485,21,

+437,377,22, 190,172,25, 650,568,42, 435,417,44, 393,267/

CLS01530

CLS01540

CLS01550

CLS01560

C

C
C

C

C
C
C

C
C
C

C

C

C

C

Ii = DATA; 12 = FEATURES; 13 = CLASS STATISTICS;
14 = TRANSFORMED DATA ; 15 = LDBAND ; 16 = RANDOM

OPEN (ii)

OPEN (I2)

OPEN (13)

OPEN (14)

OPEN (15)
REWIND II

REWIND 12

REWIND 13

REWIND 14

REWIND 15

SET UP DATA INPUT&OUTPUT DO LOOP PARAMETERS

IKI=MOD (NCLS, 6)

IMI=6* (NCLS/6) +I

ILPI=NCLS/6

IF (ILPI .EQ. 0) ILPI=I

IK2=MOD (NTERM, 5)

IM2=5" (NTERM/5) +i

ILP2=NTERM/5

IF (ILP2. EQ. 0) ILP2=I

DO 650 ISET=NSET,MSET, NDSET

READ FEATURE FILE IN TWO CASES ( IEV = 0 OR i )

IF (IEV. EQ. 0) GO TO 10
READ (12, *) TRACE, SUM

CALL SRI (12,NPI,NF3,D)

i0 DO 30 JTERM=I,NTERM

CALL SRI (12,NPI,NF3,RX)

DO 20 I=I,NPI

20 Z (I, JTERM)=RX(I)
30 CONTINUE

FIND MEAN VECTOR AND COVARIANCE MATRIX FOR EACH CLASS

IN THE FEATURE TRANSFORMED DATA

4O

DO 150 LTERM=NTERM, NTERM

KTERM=LTERM*(LTERM+I)/2

DO 150 ICLS=I,NCLS

NS=NST(ICLS, ISET)

PRINT*,' ISET =',ISET,';',
DO 40 I=I,NSMAX

DO 40 J=I,NTERM

X(I, J)=0.0

DO i00 IS_MP=I,NS
CALL SRI (II,NPI,NF,XT)

DO 70 JTERM=I,LTERM

DO 60 I=I,NPI

LTERM, ICLS,NS

CLS01570
CLS01580

CLS01590

CLS01600

CLS01610

CLS01620

CLS01630

CLS01640

CLS01650

CLS01660

CLS01670

CLS01680

CLS01690

CLS01700

CLS01710
CLS01720

CLS01730

CLS01740

CLS01750

CLS01760

CLS01770

CLS01780

CLS01790

CLS01800

CLS01810

CLS01820

CLS01830

CLS01840

CLS01850

CLS01860

CLS01870

CLS01880

CLS01890
CLS01900

CLS01910

CLS01920

CLS01930

CLS01940

CLS01950

CLS01960

CLS01970

CLS01980

CLS01990

CLS02000
CLS02010

CLS02020

CLS02030

CLS02040

CLS02050
CLS02060

CLS02070

CLS02080

CLS02090
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C
C
C

C

C

C
C
C

C

C

C

C

C

C

C

T1 (I)=XT (I)
T2 (I)=W (I)*TI (I)

60 T3 (I)=Z (I, JTERM)

CALL VIPRFF (T3, T2,NPI, i, I,XIP)

70 X (ISAMP, JTERM) =XIP

SEND THE RESULTS TO THE TRANSFORMED DATA FILE

IF (NTERM.LT. 5) GO TO 90

DO 80 II=l, ILP2

80 WRITE (14, 91) (X(ISAMP,JI), Jl=l+ (Ii-i)'5, II'5)

IF(IK2.EQ.0)GO TO I00

90 WRITE (14, 91) (X (ISAMP, Jl), JI=IM2, NTERM)
91 FORMAT (5E15.7)

I00 CONTINUE

Ii0

FIND THE CLASS STATISTICS IF NKLT = 0

IF (NKLT. EQ. I)GO TO 150

NBR (I) =LTERM
NBR (2) =NS

NBR (3) =NS

DO ii0 I=I,NPI
T(I)=0.0

CALL BECOVM (X,NSMAX, NBR, T, XMC, VC, IER)

STORE THE CLASS STATISTICS FOR POSITIVE DEFINITENESS CHECKING

DO 120 I=I,LTERM

WRITE (*, * )LTERM, I, XMC (I)
120 XMCT (I, ICLS) =XMC (I)

DO 130 I=I,KTERM

WRITE (*, *) LTERM, I,VC (I)
130 VCT (I, ICLS) =VC (I)

PRINT*, ' THE IER MUST BE

PRINT*, IER
150 CONTINUE

160

170

"0" FOR BECOVM '

STOP THE PROGRAM IF ONLY WANT TO FIND TRANSFORMED DATA (NKLT=I)

IF(NKLT.EQ.I)GO TO 650

STORE THE CLASS STATISTICS INTO FULL STORAGE MODE FOR CHECKING

DO 170 ICLS=I,NCLS

DO 170 I=I,NTERM

DO 160 J=l,I

IND=I* (I-l)/2+J

VCTF (I, J, ICLS) =VCT (IND, ICLS)

VCTF (J, I, ICLS) =VCTF (I, J, ICLS)

WRITE (*, *) I, J, IND, VCTF (I,J, ICLS) ,VCTF (J, I, ICLS)

CONTINUE

XMCTF (I, ICLS) =XMCT (I, ICLS)
CONTINUE

START CHECKING THE POSITIVE DEFINITENESS OF THE COV. MATRICES

IF 'LTERM'TH FEATURE IS L.D. ON THE OTHER FEATURES, THE RELATED

CLS02100

CLS02110

CLS02120

CLS02130

CLS02140

CLS02150

CLS02160

CLS02170

CLS02180

CLS02190

CLS02200

CLS02210

CLS02220

CLS02230

CLS02240

CLS02250

CLS02260

CLS02270

CLS02280

CLS02290

CLS02300

CLS02310

CLS02320

CLS02330

CLS02340

CLS02350

CLS02360

CLS02370
CLS02380

CLS02390

CLS02400

CLS02410

CLS02420

CLS02430

CLS02440

CLS02450

CLS02460

CLS02470

CLS02480

CLS02490

CLS02500

CLS02510

CLS02520
CLS02530

CLS02540

CLS02550

CLS02560

CLS02570

CLS02580

CLS02590
CLS02600

CLS02610

CDS02620
CLS02630

CLS02640

CLS02650

CLS02660
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C
C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

ELEMENTS IN THE MEAN VECTORS _ COVARIANCES WILL BE REMOVED

ILl=l

JLI=ILI* (ILI+I)/2

DO 600 LTERM=-I,NTERM

KTERM=LTERM* (LTERM+I)/2

DO 400 ICLS=I,NCLS
IX=0

DO 200 IROW=I,LTERM
Vl=0.0

DO 180 JCK=I,LTERM

180 VI=VI+VCTF (IROW, JCK, ICLS)

VCK=VLD* LTERM

IF (VI. EQ. VCK) GO TO 200
IX=IX+I

IY=0

DO 190 JCOL=I,LTERM

V2=VCTF (IROW, JCOL, ICLS)

IF(V2.EQ.VLD)GO TO 190

IY=IY+I

VCF (IX, IY) =V2
190 CONTINUE

200 CONTINUE
WRITE (15, *) IX, IY, ILI

PRINT*, 'IX, IY, ILI MUST BE THE SAME',IX, IY, ILI

CALL VCVTFS (VCF, ILI, NTERM, VC)

WRITE (*, *) ICLS, VC (I)
OPEN (16)
REWIND 16

DO 210 I=l, JLI

WRITE (16,211)VC (I)

vcv (i)=vc (i)
210 VCTLI (I, ICLS) =VC (I)

211 FORMAT (El3.5)

OPEN (16)
REWIND 16

DO 220 I=I,JLI

220 READ (16,211)VCV(I)

DO 230 I=I,NTERM

230 WK (I) =0.0
DSEED=5. DO

SECOND TEST ON NUMERICAL POSITIVE DEFINITENESS OF THE MATRICES

CALL GGNSM (DSEED, NSAMP, ILI, VCV, NSAMP, VEC, WK, IER)

IF(IER.NE.0)GO TO 440

WRITE (*, *) ICLS, VCTLI (i, ICLS) ,VC (i)

CHECK IF ALL CLASS COVARIANCES HAVE INVERSE MATRICES

VC WILL BE CHANGED AFTER LINVIP

CALL LINVIP(VC, ILI,VCI, IDGT, DI,D2, IER)

WRITE(*,*)ICLS,VCI(1)

PRINT*,' THE FOLLOWING IER MUST BE 0 FOR LINVIP'

PRINT*,ISET, LTERM, ICLS,'; IER =',IER

IF(IER.NE.0)GO TO 450

DO 240 I=I,JLI

CLS02670

CLS02680

CLS02690

CLS02700

CLS02710

CLS02720

CLS02730

CLS02740

CLS02750

CLS02760

CLS02770

CLS02780

CLS02790

CLS02800

CLS02810

CLS02820

CLS02830

CLS02840

CLS02850

CLS02860

CLS02870

CLS02880

CLS02890

CLS02900
CLS02910

CLS02920

CLS02930

CLS02940

CLS02950

CLS02960

CLS02970

CLS02980

CLS02990

CLS03000

CLS03010

CLS03020

CLS03030

CLS03040

CLS03050

CLS03060

CLS03070

CLS03080

CLS03090
CLS03100

CLS03110

CLS03120

CLS03130

CLS03140

CLS03150

CLS03160

CLS03170

CLS03180

CLS03190

CLS03200

CLS03210

CLS03220
CLS03230
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C

C

C

C

C

C

C

C

C

240 VCIT (I, ICLS)=VCI (I)

STORE BACK THE VALUES OF VCVC FROM VCVCF

CALL VCVTFS (VCF, ILI, NTERM, VC)

CALL VCVTSF (VCI, ILI,VCIF, NTERM)
DET=DI*2. **D2

CX= (2. *3. 14159) ** (FLOAT (ILI)/2. )
C=I. / (CX*SQRT (DET))

CT (ICLS) =C

IF (ICLS.NE.NCLS) GO TO 400

SEND THE FINAL RESULTS TO THE CLASS STATISTICS FILE

DO 250 KCLS=I,NCLS

IX=0

DO 250 I=I,LTERM

V3=XMCTF (I,KCLS)

IF(V3.EQ.VLD)GO TO 250
IX=IX+ 1

XMTLI (IX, KCLS) =V3
250 CONTINUE

DO 280 I=I,ILI

IF (NCLS.LT.6)GO TO 270

DO 260 IL=I,ILPI

260 WRITE (13,321) (XMTLI (I,LCLS), LCLS=I+ (IL-I) *6, IL*6)

IF(IKI.EQ.0)GO TO 280

270 WRITE (13,321) (XMTLI (I,LCLS), LCLS=IMI, NCLS)

280 CONTINUE

DO 310 I=I,JLI
IF(NCLS.LT.6)GO TO 300

DO 290 IL=I, ILPI

290 WRITE (13,321) (VCTLI (I,LCLS), LCLS=I+ (IL-I) *6, IL*6)

IF(IKI.EQ.0)GO TO 310

300 WRITE (13,321) (VCTLI (I,LCLS), LCLS=IMI, NCLS)

310 CONTINUE

IF(NCLS.LT.6)GO TO 330

DO 320 IL=I,ILPI

320 WRITE (13,321) (CT (LCLS), LCLS=I+ (IL-I) *6, IL*6)

321 FORMAT (6E13.5)

IF(IKI.EQ.0)GO TO 340

330 WRITE (13,321) (CT (LCLS), LCLS=IMI, NCLS)

340 DO 370 I=I,JLI

IF (NCLS.LT.6)GO TO 360

DO 350 IL=I,ILPI

350 WRITE (13,321) (VCIT (I,LCLS), LCLS=I+ (IL-I) *6, IL*6)

IF (IKI.EQ.0)GO TO 370

360 WRITE (I3,321 ) (VCIT (I,LCLS ),LCLS=IMI, NCLS)
370 CONTINUE

400 CONTINUE

INTERNAL CHECKING FOR ACCURACY OF MATRIX INVERSION

DO 430 ICLS=I,NCLS

DO 410 I=I,JLI

VC (I) =VCTLI (I, ICLS)

410 VCI (I) =VCIT (I, ICLS)

CLS03240

CLS03250

CLS03260

CLS03270

CLS03280

CLS03290
CLS03300

CLS03310

CLS03320

CLS03330

CLS03340

CLS03350

CLS03360

CLS03370

CLS03380

CLS03390

CLS03400

CLS03410

CLS03420

CLS03430

CLS03440

CLS03450

CLS03460

CLS03470

CLS03480

CLS03490

CLS03500

CLS03510

CLS03520

CLS03530

CLS03540

CLS03550

CLS03560

CLS03570

CLS03580

CLS03590

CLS03600

CLS03610

CLS03620

CLS03630

CLS03640
CLS03650

CLS03660

CLS03670

CLS03680

CLS03690

CLS03700

CLS03710

CLS03720

CLS03730

CLS03740

CLS03750
CLS03760

CLS03770

CLS03780

CLS03790

CLS03800
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C
C 420

C

C

C

C

C

C

421

430

C

C

C

C
440

450

C

C

C

C

C
C 460

C
C 470

471

C
C

C

480

490

500

C

C

C

C

C

C

C 53O
C

C 540

C 550

6O0

65O

DO 420 I=I,JLI

WI%ITE (*, *)VC (I) ,VCI (I)
CALL VMULSS (VC,VCI, ILI, TEST, NTERM)

THE FOLLOWING 3 STAT_NTS CAN BE USED FOR MATRIX INVERSION CHECK

P_NT_, ' THE FOLLOWING MATRIX MUST BE AN IDENTITY MATRIX

DO 430 I=I,ILI

WRITE (*, 421) (TEST (I, J), J=l, ILI)

FORMAT (16F5.2)

CONTINUE

PRINT*, ' ILI =' ,ILI

ILI=ILI+I

JLI=ILI* (ILI+I)/2

IF (ILI.GT.NLI)GO TO 650
GO TO 600

SEND THE INFORMATION OF L.D. FEATURES & REASONS FOR

NON-POSITIVE-DEFINITENESS OF COV. MATRICES TO THE FILE 'LDBAND'

WRITE(15,*)'GGNSM HAS IER.NE.0'
WRITE(15,*)'ISET =,,ISET,';LTERM =',LTERM,';ICLS =',ICLS

PRINT*,'ISET =',ISET,':LTERM =',LTERM,''ICLS, =',ICLS

DO 500 JCLS=I,NCLS

THE FOLLOWING 5 STATEMENTS ARE USED FOR INTERNAL CHECKING

WRITE (15,*) 'JCLS =' ,JCLS

DO 460 I=I,NTERM

WRITE (15, *) I, XMCTF (I,JCLS)

DO 470 I=I,NTERM

WRITE (15,471) I, (VCTF (I,J, JCLS) ,J=l, NTERM)

FORMAT (I4,8F9.2)

RESET THE VARIABLES TO '0.0' FOR FUTURE USE

XMCTF (LTERM, JCLS) =VLD

DO 480 I=I,NTERM

VCTF (I, LTERM, JCLS )=VLD

DO 490 J=I,NTERM

VCTF (LTERM, J,JCLS) =VLD

CONTINUE

THE FOLLOWING 7 STATEMENTS ARE USED FOR INTERNAL CHECKING

DO 550 JCLS=I,NCLS

WRITE (15, *) 'JCLS =' ,JCLS

DO 530 I=I,NTERM
WRITE (15, *) I,XMCTF (I, JCLS)

DO 540 I=I,NTERM

WRITE (15,421) I, (VCTF (I, J, JCLS), J=l, NTERM)

CONTINUE

CONTINUE

CONTINUE

STOP

END
SUBROUTINE SRI (IFILE, NPI, NFX, RX)

CLS03810

CLS03820

CLS03830

CLS03840

CLS03850

CLS03860

CLS03870

CLS03880

CLS03890

CLS03900

CLS03910

CLS03920

CLS03930

CLS03940

CLS03950

CLS03960

CLS03970

CLS03980

CLS03990

CLS04000

CLS04010

CLS04020

CLS04030

CLS04040

CLS04050

CLS04060

CLS04070

CLS04080

CLS04090

CLS04100

CLS04110

CLS04120

CLS04130

CLS04140

CLS04150

CLS04160

CLS04170

CLS04180

CLS04190

CLS04200

CLS04210

CLS04220

CLS04230

CLS04240

CLS04250

CLS04260

CLS04270

CLS04280

CLS04290

CLS04300
CLS04310

CLS04320

CLS04330

CLS04340
CLS04350

CLS04360

CLS04370
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C

C
C

THIS SUBROUTINE IS USED TO READ THE INPUT DATA

I0

20

30

REAL RX (NP1)
IKX=MOD (NPI, NFX)

IMX=NFX* (NPI/NFX) +I
ILPX=NPI/NFX

IF (ILPX. EQ. 0) ILPRI=I

IF (NPI .LT.NFX) GO TO 20

DO I0 I=l, ILPX

READ (IFILE, *) (RX (J), J=l+ (I-l) *NFX, I*NFX)
IF(IKX.EQ.0)GO TO 30

READ (IFILE, *) (RX (J), J=IMX, NPI)

RETURN

END

CLS04380

CLS04390

CLS04400

CLS04410

CLS04420
CLS04430

CLS04440

CLS04450
CLS04460

CLS04470

CLS04480

CLS04490

CLS04500

CLS04510

CLS04520

PROGRAM CANONIC

PARAMETER (NTERM=I 8,MTERM=NTERM* (NTERM+ 1 )/2,NCLS=3,

+NWK=NTERM* (NTERM+2))

REAL XMT (NTERM, NCLS ),VCVT (MTERM, NCLS), CT (NCLS),
+VCVIT (MTERM, NCLS), D (NTERM), Z (NTERM, NTERM) ,WK (NWK),

+WCS (MTERM), ACS (MTERM), WCSI (MTERM), TEST (NTERM, NTERM),

+T (NTERM, NTERM), WCSI (MTERM), XMO (NTERM)

INTEGER NST (NCLS)

DATA IJOB, IFLAGI, IOPT, NIN, NOUT/2, 0, 3, 0, 6/

NTERM = DIMENSIONALITY IN THE CLASS STATISTICS

NCLS = TOTAL NUMBER OF INFORMATION CLASSES

XMT = MEAN VECTORS FOR ALL CLASSES

VCVT = COV. MATRICES FOR ALL CLASSES

CT = VARIABLE USED TO STORE M.L. THRESHOLD PARAMETER

VCVIT = INVERSE COV. MATRICES FOR ALL CLASSES

D = EIGENVALUES

Z = CANONICAL FEATURES

WK = WORKING SPACE FOR IMSL ROUTINES

WCS = WITHIN CLASS SCATTER MATRIX

ACS = AMONG CLASS SCATTER MATRIX

WCSI = TEMPORARY STORAGE FOR WCS

WCSI = INVERSE MATRIX OF WCS

XMO = GLOBAL MEAN VECTOR

TEST = INTERNAL CHECKING FOR MATRIX INVERSION ACCURACY

C--->>CHOOSE OR TYPE IN THE CORRECT NUMBERS OF SAMPLES IN THE DATA SETS

C

C

CAN00010

CAN00020

CAN00030

CAN00040

CAN00050

CAN00060

CAN00070

CAN00080
CAN00090
CANO0100
CAN00110

CAN00120

CAN00130

CAN00140

CAN00150

CAN00160

CAN00170

CAN00180
CAN00190

CAN00200

CAN00210

CAN00220

CAN00230
CAN00240

CAN00250

CAN00260

CAN00270

CAN00280
CAN00290
CAN00300

CAN00310

CAN00320

C NSET F1 NP2 A B C DACO EXNU RUSE

C 1 M2611KI 832 WW:I41 SF:414 GS:277 760928 76102207 1-1622

C 2 M2611K2 1551 WW:658 SF:211 UC:682 770503 77102207 6515-8096

C 3 M2611K3 1477 WW:677 SF:643 GS:157 770626 77102207 8097-9691

C 4 M2614NI 1265 SW:664 SF:437 NP:I64 770508 77102217 1-1396

CAN00330
CAN00340

CAN00350

CAN00360

CAN00370
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C
C

C

C

C

C
C

C

C

C

C

5 M2614N2 1239 SW:787 SF:291 NP:I61 770629 77102217 2777-4141 CAN00380

6 M2614N3 1444 SW:931 SF:330 NP:I83 770804 77102217 5426-6993 CAN00390

DATA NST/141, 414, 277, 658, 211, 682, 677, 643,157/

DATA NST/141, 414, 277, 658, 211, 682, 677, 643,157,
+664,437,164,787,291,161,931,330,183/

DATA NST/664,437,164,787,291,161,931,330,183/

DATA NST/141, 414, 277, 658, 211, 682, 677/

DATA NST/587,216,121/

DATA NST/658, 211, 682/

CAN00400

CAN00410

CAN00420

CAN00430

CAN00440

CAN00450

CAN00460

CAN00470

CAN00480

CAN00490

C

C

C

C

C

C

C

C

THE FOLLOWING DATA 'NST' ARE USED FOR SOIL ORDER DATA SET. 'SO'

NP2=479; MOL ALF EN AR UL IN SP VE H OX UNCLASSIFIED

DATA NST/154, I13, 78, 52, 45, 37, 30, ii, 8, ii, 32/

DATA NST/154,113, 78, 52, 45, 97/

DATA NST/154,113, 78, 52, 45, 37/

CAN00500

CAN00510

CAN00520

CAN00530

CAN00540

CAN00550
CAN00560

CAN00570

C

C

C

C
C

C

C
C

C

C
C

C

C

C

C

C

C

C

C

C

C

THE FOLLOWING DATA 'NST' IS USED FOR SOIL 'OMI' DATA SET

I.E. (I) MOLLISOL, OR (2) ALFISOL, AND GROUP SAMPLES

ACCORDING TO THEIR ORGANIC MATERIAL: % WEIGHT
CLASS 1 TO 6 : NP2 = 255

CLSI : .11% .GE. OM .LE. 1.5%

CLS2 : 1.5% .GT. OM .LE. 2.0%

ICLS3 : 2.0% .GT. OM .LE. 2.5%
CLS4 : 2.5% .GT. OM .LE. 3.5%

CLS5 : 3.5% .GT. OM .LE. 5.0%

: # 1 -> # 51

: # 52 -> # 104

: # 105 -> # 138

: # 139 -> # 183

: # 184 -> # 222

CLS6 : 5.0% .GT. OM .LE. 10.12% : # 223 -> # 255

DATA NST/51, 54, 33, 45, 39, 33/

CAN00580

CAN00590
CAN00600

CAN00610

CAN00620

CAN00630

CAN00640

CAN00650

CAN00660

CAN00670
CAN00680

CAN00690

CAN00700

CAN00710

DATA 'S2A' : ANOTHER TEST GROUPED BY THE SAME OM RANGES AS 'OM2' CAN00720

OM PERCENTAGE : 0, I; 1,2; 2,3; 3,4; 4,6; 6 AND ABOVE CAN00730
CAN00740

DATA NST/26,78,64,32,55/ CAN00750
CAN00760

CAN00770

CAN00780

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

THE FOLLOWING DATA 'NST' IS USED FOR 'OM2' DATA SET

ACCORDING TO THEIR ORGANIC MATERIAL: % WEIGHT

CLASS 1 TO 6 :

CLSI : .08% .GE. OM LE

CLS2 : 1.0% .GT. OM LE

CLS3 : 2.0% .GT. OM LE

CLS4 : 3.0% .GT. OM LE

CLS5 : 4.0% .GT. OM LE

CLS6 : 6.0% .GT. OM LE

NP2 = 514

1.0%

2.0%

3.0%

4.0%

6.0%

: # 1 -> # 82
: # 83 -> # 217

: # 218 -> # 337

: # 338 -> # 391

: # 392 -> # 450

84.79% : # 451 -> # 514

DATA NST/82,135,120, 54, 59, 64/

DATA NST/82,135,120,54,123/

DATA NST/44,31,18,23,24,51,37,27/

DATA NST/83,57,94,31,37,59,103,26,24/

DATA NST/103,26,24/

CAN00790

CAN00800

CAN00810

CAN00820

CAN00830

CAN00840

CAN00850

CAN00860

CAN00870

CAN00880
CAN00890

CAN00900

CAN00910

CAN00920

CAN00930

CAN00940
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C CAN00950

C
C

C
C
C
C
C
C
C
C
C
C
C

THE FOLLOWING DATA 'NST' IS USED FOR SOIL IRON OXIDE 'IO' DATA SETCAN00960

ACCORDING TO THEIR FE203 % WEIGHT CAN00970

0.4% : # 1 -> # 102

0.6% : # 103 -> # 175

0.8% : # 176 -> # 244

1.2% : # 245 -> # 349

1.6% : # 350 -> # 401

25.60% : # 402 -> # 467

CLASS 1 TO 6 : NP2 = 467

CLSI : .02% .GE. FE203 .LE

CLS2 : 0.4% .GT. FE203 .LE

CLS3 : 0.6% .GT. FE203 .LE

CLS4 : 0.8% .GT. FE203 .LE

CLS5 : 1.2% .GT. FE203 .LE

CLS6 : 1.6% .GT. FE203 .LE

DATA NST/102, 73, 69,105, 52, 66/

CAN00980

CAN00990

CAN01000

CAN01010
CAN01020

CAN01030

i OlO4O
CAN01050

CAN01060
CAN01070

CAN01080

C
C
C
C
C
C
C

THE FOLLOWING DATA 'NST' IS USED FOR SOIL TEXTURE 'ST' DATA SET

ACCORDING TO THEIR SAND-SILT-CLAY % CONTENT
CLASS 1 TO 6 : NP2 = 483; DETAILS : SEE FILE (S5L.DATA.CI)

DATA NST/40, 63, 76, 93, 68,143/

CAN01090

CAN01100

CAN01110
CAN01120

CAN01130
CAN01140

CAN01150

C

C

C

C

C

C

C

THE FOLLOWING DATA 'NST' IS USED FOR S.D. VEGETATION DATA

DATA NST/225, 61, 292, 469, 82,182, 63,103, 39, 39,217, 51,

+393,441,80,88, 88,41,32,26, 118,43,121,44, 45,102,66,89,

+78,53,147,39, 24,42,119,69, 76,96,107,154, 28,19/

CAN01160

CAN01170

CAN01180
CAN01190

CAN01200

CAN01210

CAN01220

C THE FOLLOWING DATA 'NST' IS USED FOR IOWA VEGETATION DATA

C

C DATA NST/514,41, 517,36,32, 621,517,45, 610,485,21,

C +437,377,22, 190,172, 25, 650,568, 42, 435,417, 44, 393,267/

C .......

CAN01230

CAN01240
CAN01250

CAN01260

CAN01270

C
C
C

C

C

C

ii = CLASS STATISTICS; 12 = CANONICAL FEATURES

OPEN (I1 )

OPEN (i2 )
REWIND ii

REWIND 12

SET THE INPUT&OUTPUT DO LOOP PARAMETERS

IKI=MOD (NCLS, 6)

IMI=6* (NCLS/6) +i

IK2=MOD (NTERM, 5)

IM2=5" (NTERM/5) +i

IK3=MOD (NTERM, 16)

IM3=16" (NTERM/I 6) +i

ILPI=NCLS/6

IF (ILPI .EQ. 0) ILPI=I
ILP2=NTERM/5

IF (ILP2 .EQ. 0) ILP2=I
ILP 3=NTERM/16

IF (ILP3 .EQ. 0) ILP3=I

SET THE IMSL INPUT&OUTPUT TO THE FEATURE DESIGNER ( SCREEN )

CAN01280

CAN01290

CAN01300

CAN01310

CAN01320

CAN01330

CAN01340

CAN01350

CAN01360

CAN01370

CAN01380

CAN01390

CAN01400

CAN01410

CAN01420

CAN01430
CAN01440

CAN01450

CAN01460

CAN01470

CAN01480

CAN01490

CAN01500

CAN01510
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C

C
C
C

C
C
C

C
C

C
C

C
C
C
C
C

CALL UGETIO(IOPT,NIN, NOUT)

DO 130 LTERM=I,NTERM

KTERM=LTERM*(LTERM+I)/2

READ IN CLASS STATISTICS

DO 30 ITERM=I,LTERM

IF(NCLS.LT.6)GO TO 20

DO I0 IL=I,ILPI
i0 READ (Ii, *) (XMT (ITERM, JCLS), JCLS=I+ (IL-I) *6, IL*6)

IF(IKI.EQ.0)GO TO 30

20 READ (ii, *) (XMT (ITERM, JCLS), JCLS=IMI, NCLS)

30 CONTINUE

DO 60 ITERM=I,KTERM

IF (NCLS.LT. 6)GO TO 50

DO 40 IL=I,ILPI
40 READ (ii, *) (VCVT (ITERM, JCLS), JCLS=I+ (IL-I) *6, IL*6)

IF(IKI.EQ.0)GO TO 60
50 READ (ii, *) (VCVT (ITERM, JCLS), JCLS=IMI, NCLS)

60 CONTINUE

IF(NCLS.LT.6)GO TO 80

DO 70 IL=I,ILPI
70 READ (ii,*) (CT(ICLS), ICLS=I+ (IL-I)*6, IL*6)

IF(IKI.EQ.0)GO TO 90
80 READ (ii, *) (CT (ICLS), ICLS=IMI, NCLS)

90 DO 120 ITERM=I,KTERM

IF (NCLS.LT. 6)GO TO Ii0

DO I00 IL=I, ILPI
I00 READ (Ii, *) (VCVIT (ITERM, JCLS), JCLS=I+ (IL-I) *6, IL*6)

IF(IKI.EQ.0)GO TO 120
II0 READ (ii, *) (VCVIT (ITERM, JCLS), JCLS=IMI, NCLS)

120 CONTINUE

130 CONTINUE

FIND WITHIN CLASS SCATTER MATRIX

CALL FWCS (VCVT, MTERM, NST, NCLS, WCS)

CALL USWSM(' WCS MATRIX IS ',I5,WCS,NTERM, I)

FIND AMONG CLASS SCATTER MATRIX

CALL FACS (XMT, NTERM, MTERM, NST, NCLS, ACS, XMO)
CALL USWSM(' ACS MATRIX IS ',I5,ACS,NTERM, I)

FIND CANONICAL FEATURES

CALL EIGZS(ACS,WCS,NTERM, IJOB,D,Z,NTERM, WI<,IER)
CALL USWFV('CANONIC EVALUES',I5, D,NTERM, I,I)

CALL USWSM('CAI_ONIC EVECTOR',I5, Z,NTERM, I)

INTERNAL CHECKING FOR MATRIX INVERSION ACCURACY

CALL SCOPY (MTERM, WCS, I,WCSI, i)

CALL LINVlP (WCSI, NTERM, WCSI, IDGT, DI, D2, IERI)

CALL VMULSS (WCSI, ACS, NTERM, TEST, NTERM)

CALL FTRACE (TEST, NTERM, TRACE)

CAN01520

CAN01530

CAN01540

CAN01550

CAN01560

CAN01570

CAN01580

CAN01590

CAN01600

CAN01610

CAN01620

CAN01630

CAN01640

CAN01650
CAN01660

CAN01670

CAN01680

CAN01690
CAN01700

CAN01710

CAN01720

CAN01730

CAN01740

CAN01750

CAN01760

CAN01770

CAN01780

CAN01790

CAN01800

CAN01810
CAN01820

CAN01830

CAN01840
CAN01850

CAN01860
CAN01870

CAN01880

CAN01890

CAN01900

CAN01910

CAN01920

CAN01930

CAN01940

CAN01950

CAN01960

CAN01970

CAN01980

CAN01990

CAN02000

CAN02010

CAN02020

CAN02030

CAN02040

CAN02050
CAN02060

CAN02070

CAN02080
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C
C
C

C
C

C

SEND THE ACCURACY CON_4ENTS TO THE SCREEN

IF(IER.NE.0.OR.WK(1).GE.I.0)GO TO 140

WRITE (*, 3) IER, WK (I)
GO TO 150

140 WRITE (*,2) IER, WK (I)

1 FORMAT (5E15.7)

2 FORMAT(' PERFORMANCE OF "EIGZS" IS POOR,

+'; WK(1) =',E15.7)

3 FORMAT (' PERFORMANCE OF "EIGZS" IS GOOD,

+'; WK(1) =',E15.7)

150 DO 170 I=I,NTERM

IF(D(I).LE.0.0)GO TO 160
GO TO 170

160 WRITE (*, 4) I,D (I)
4 FORMAT(' EIGEN VALUE IS "< = 0.0" AT

+' WHERE D(I) =',E15.7)
IFLAGI=IFLAGI+I

170 CONTINUE

IF(IFLAGI.GT.0)GO TO 180

WRITE (*, 6)
GO TO 190

180 WRITE (*, 5) IFLAGI
5 FORMAT(' THERE ARE',I5,' NEGATIVE OR

6 FORMAT(' ALL EIGEN VALUES ARE GREATER

190 CALL VABSMF (D,NTERM, i, SUM)

IF (ABS (TRACE-SUM) .GT. I. 0E-I) GO TO 200

WRITE (*, 8) TRACE, SUM
GO TO 210

200 WRITE (*, 7) TRACE, SUM

7 FORMAT(' ACCURACY OF "EIGZS" IS POOR,

+'; SUM =',E15.7)

8 FORMAT(' ACCURACY OF "EIGZS" IS GOOD,

+'; SUM =',E15.7)

IER =' I5,

IER =' , I5,

I =', I5,

ZERO EIGEN VALUES

THAN ZERO ')

TRACE =! E15.7,

TRACE = ' , E15.7,

SEND THE FINAL RESULTS TO THE CANONICAL FEATURE FILE

210 WRITE (12, 9)TRACE, SUM

9 FORMAT (2E15.7)

IF (NTERM.LT. 5)GO TO 230

DO 220 I=I,ILP2

220 WRITE (12, i) (D (NTERM+I-J), J=l+ (I-l) *5, 1"5)

IF(IK2.EQ.0)GO TO 240

230 WRITE (12, i) (D (NTERM+I-J), J=IM2, NTERM)

240 DO 270 J=I,NTERM

IF(NTERM.LT.5)GO TO 260

DO 250 I=I,ILP2

250 WRITE (12, i) (Z (K,NTERM+I-J), K=I+ (I-l) *5, 1"5)
IF(IK2.EQ.0)GO TO 270

260 WRITE (12, 1) (Z (K,NTERM+I-J), K=IM2, NTERM)

270 CONTINUE

CALL VMULSF (WCS, NTERM, Z,NTERM, NTERM, TEST, NTERM)

NTM=NTERM

CALL VMULFM (Z,TEST, NTM, NTM, NTM, NTM, NTM, T,NTM, IER)

SEND THE ACCURACY COF_4ENTS TO THE SCREEN

,)

CAN02090

CAN02100

CAN02110
CAN02120

CAN02130

CAN02140

CAN02150

CAN02160

CAN02170

CAN02180

CAN02190

CAN02200
CAN02210

CAN02220

CAN02230
CAN02240

CAN02250

CAN02260

CAN02270

CAN02280

CAN02290

CAN02300

CAN02310

CAN02320

CAN02330

CAN02340

CAN02350

CAN02360

CAN02370

CAN02380

CAN02390
CAN02400

CAN02410

CAN02420

CAN02430

CAN02440
CAN02450

CAN02460

CAN02470

CAN02480
CAN02490

CAN02500

CAN02510

CAN02520

CAN02530

CAN02540

CAN02550
CAN02560
CAN02570
CAN02580

CAN02590
CAN02600
CAN02610
CAN02620
CAN02630
CAN02640
CAN02650
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C
C
C

280

281

290

300

310

IO

20

30

PRINT*,' THE FOLLOWING MATRIX MUST BE AN IDENTITY MATRIX'

IF (NTERM.LT.i6)GO TO 290

DO 280 IL=I, ILP3

DO 280 I=I,NTERM
WRITE (*, 281) (T (I, J), J=l+ (IL-I) "16, IL*I6)

FORMAT (16F5.2)

IF(IK3.EQ.0)GO TO 310

DO 300 I=I,NTERM

WRITE (*, 281) (T (I, J), J=IM3, NTERM)

STOP

END

SUBROUTINE FWCS (VCVT, MTERM, NST, NCLS, WCS)

THIS SUBROUTINE FINDS WITHIN CLASS SCATTER MATRIX

REAL VCVT (MTERM, NCLS) ,WCS (MTERM)

INTEGER NST (NCLS)
NXl--0

DO I0 I=I,NCLS

NXI=NXI +NST (I)

DO 30 I=I,MTERM
XI=0.0

DO 20 J=I,NCLS
X2=FLOAT (NST (J)) -I. 0

XI=XI+X2*VCVT (I, J)/FLOAT (NXI)

WCS (I) =Xl
RETURN

END

SUBROUTINE FACS (XMT, NTERM, MTERM, NST, NCLS, ACS, XMO)

THIS SUBROUTINE FINDS AMONG CLASS SCATTER MATRIX

REAL XMT (NTERM, NCLS) ,ACS (MTERM) ,XMO (NTERM)

INTEGER NST (NCLS)
NXI=0

DO i0 I=I,NCLS

I0 NXI=NXI+NST (I)

DO 30 I=I,NTERM

XI=0.0

DO 20 J=I,NCLS

X2=FLOAT (NST (J))
20 XI=XI+X2*XMT (I, J)/FLOAT (NXI)

3O XMO (I)=Xl
DO 50 I=I,NTERM

DO 50 J=l, I

IND= (I-l) *I/2+J
XI=0.0

DO 40 ICLS=I,NCLS
X2=FLOAT (NST (ICLS))/FLOAT (NXI)

40 XI=XI+X2 * (XMT (I, ICLS) -XMO (I)) * (XMT (J,ICLS) -XMO (J))

50 ACS (IND) =Xl
RETURN

END

SUBROUTINE FTRACE (TEST, NTERM, TRACE)

REAL TEST (NTERM, NTERM)
TRACE=0.0

CAN02660

CAN02670

CAN02680

CAN02690

CAN02700

CAN02710

CAN02720

CAN02730

CAN02740

CAN02750

CAN02760

CAN02770

CAN02780

CAN02790

CAN02800

CAN02810

CAN02820

CAN02830

CAN02840

CAN02850
CAN02860
CAN02870

CAN02880

CAN02890

CAN02900

CAN02910

CAN02920

CAN02930

CAN02940

CAN02950
CAN02960

CAN02970

CAN02980

CAN02990

CAN03000

CAN03010
CAN03020

CAN03030

CAN03040

CAN03050

CAN03060

CAN03070
CAN03080

CAN03090

CAN03100

CAN03110

CAN03120

CAN03130

CAN03140

CAN03150

CAN03160

CAN03170

CAN03180

CAN03190

CAN03200

CAN03210

CAN03220



133

DO I0 I=I,NTERM

i0 TRACE=TRACE+TEST (I, I)

RETURN

END

CAN03230

CAN03240

CAN03250

CAN03260

C

C

C

PROGRAM PCFIND

PARAMETER (NTSET=4, NTERM=I 6,MTERM=NTERM* (NTERM+I)/2, NCLS=3,

+NSET=I, MSET=I, NDSET=I, NSMAX=100, NZ 1=NCLS*NCLS*NTERM,

+IRES=0, IFIND=I, ICKMV=0, NDTRM=I, NZ 2=NCLS*NTERM, NTERMC=I 5 )

IFIND = 1 ---> NDTRM CONTROL : LTERM=I, NTERM, NDTRM
IFIND = 0 ---> NDTRM DISABLE : LTERM = NTERM ONLY

C-->> IRES = 1 ---> NSMAX MUST EXCEED MAX(NST(I)) << ..... NOTES!!!

IRES = 0 ---> NSMAX CONTROL : SUBROUTINE GGNSMC
C
C
C
C
C
C
C
C
C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

NTERMC > OR = NTERM , WHERE NTERMC IS USED TO READ ENTIRE

TRANSFORMED DATA; WHILE NTERM IS USED TO DECIDE

HOW MANY OF THEM WILL BE CONTRIBUTED TO PC

NTERM = TOTAL NUMBER OF FEATURES USED

NCLS = TOTAL NUMBER OF INFORMATION CLASSES

NSMAX = PRESET MAX. NO. OF SAMPLES FOR ONE CLASS

REAL XMT (NTERM, NCLS) ,VCVT (MTERM, NCLS), CT (NCLS),

+VCVIT (MTERM, NCLS), TVEC (NSMAX, NTERM, NCLS),
+VCVIF (NTERM, NTERM), VCV (MTERM), VCVI (MTERM), XM (NTERM),

+PC (NTERM), QP (NCLS, NTERM), PR (NCLS, NTERM), PX (NCLS),

+VEC (NSMAX, NTERM), WK (NTERM), X (NTERM), T1 (NTERM)

REAL XMCK (NTERM), VCVCK (MTERM), TX (NTERM), Y (NTERM)

REAL RVEC (NSMAX, NTERMC, NCLS), AP (NCLS)

INTEGER NBR (6 ),NPC (NCLS, NCLS, NTERM), NST (NCLS)
CHARACTER*2 XCI

DOUBLE PRECISION DSEED

DATA XCI/' '/

DATA PC/NTERM*0.0/

DATA QP,PR, PX/NZ2*0.0, NZ2*0.0,NCLS*0.0/

DATA DSEED,NPC/5.D0,NZI*0/

DATA (NBR(I),I=4,6),IOPT, NIN, NOUT/I,0,0,3,0,6/

XMT

VCVT

CT

VCVIT

TVEC

VCVIF
VCV

VCVI

XM

PC
XMCK
VCVCK

NBR

NPC

= MEAN VECTORS FOR ALL CLASSES

= COV. MATRICES FOR ALL CLASSES

= M.L. DECISION RULE PARAMETER
= INVERSE COV. MATRICES FORALL CLASSES

= GENERATED SAMPLE VECTORS

= INVERSE COV. MATRIX IN FULL STORAGE MODE

= COV. MATRIX

= INVERSE COV. MATRIX IN SY594ETRIC STORAGE MODE

= MEAN VECTOR

= PROBABILITY OF CORRECT CLASSIFICATION

= CHECKING VECTOR FOR MEAN

= CHECKING MATRIX FOR COVARIANCES

= IMSL ROUTINE-USED PARAMETER VECTOR

= CLASSIFICATION RESULT MATRIX

PCF00010

PCF00020

PCF00030

PCF00040

PCF00050

PCF00060

PCF00070

PCF00080

PCF00090

PCF00100

PCF00110
PCF00120

PCF00130

PCF00140

PCF00150

PCF00160

PCF00170

PCF00180

PCF00190

PCF00200

PCF00210

PCF00220

PCF00230

PCF00240

PCF00250
PCF00260

PCF00270

PCF00280

PCF00290

PCF00300
PCF00310

PCF00320

PCF00330

PCF00340

PCF00350

PCF00360

PCF00370

PCF00380

PCF00390

PCF00400

PCF00410
PCF00420

PCF00430

PCF00440
PCF00450

PCF00460

PCF00470

PCF00480
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C NST = STORE THE TOTAL NO. OF SAMPLES FOR EACH CLASS PCF00490

C PCF00500

C _ PCF00510

C PCF00520

C--->>CHOOSE OR TYPE IN THE CORRECT NUMBERS OF SAMPLES IN THE DATA SETS PCF00530

C PCF00540

C ---PCF00550

C
C

C
C

C

C

C

C

C

C

C
C

C

C

C

C

NSET F1

1 M2611KI

2 M2611K2

3 M2611K3

4 M2614NI

5 M2614N2

6 M2614N3

NP2 A B C DACO EXNU RUSS PCF00560

832 WW:I41 SF:414 GS:277 760928 76102207 1-1622 PCF00570

1551 WW:658 SF:211 UC:682 770503 77102207 6515-8096 PCF00580

1477 WW:677 SF:643 GS:157 770626 77102207 8097-9691 PCF00590

1265 SW:664 SF:437 NP:I64 770508 77102217 1-1396 PCF00600

1239 SW:787 SF:291 NP:I61 770629 77102217 2777-4141 PCF00610

1444 SW:931 SF:330 NP:I83 770804 77102217 5426-6993 PCF00620

DATA NST/141,414,277,658,211,682,677,643,157/

DATA NST/141,414,277,658,211,682,677,643,157,

+664,437,164,787,291,161,931,330,183/

DATA NST/664,437,164,787,291,161,931,330,183/

DATA NST/141,414,277,658,211,682,677/

DATA NST/587,216,121/

DATA NST/658,211,682/

PCF00630

PCF00640

PCF00650

PCF00660
PCF00670

PCF00680

PCF00690

PCF00700

PCF00710

PCF00720

C

C

C
C

C
C

C

C

THE FOLLOWING DATA 'NST' ARE USED FOR SOIL ORDER DATA SET. 'SO'

NP2=479; MOL ALF EN AR UL IN SP VE H OX UNCLASSIFIED

DATA NST/154,113,78,52,45,37,30,11,8,11,32/

DATA NST/154,113,78,52,45,97/

DATA NST/154,113,78,52,45,37/

PCF00730

PCF00740

PCF00750

PCF00760

PCF00770

PCF00780
PCF00790

PCF00800

C

C

C

C

C

C

C

C

C

C

C
C

C

C
C

C
C

C

C

C
C

THE FOLLOWING DATA 'NST' IS USED FOR SOIL 'OMI' DATA SET

I.E. (I) MOLLISOL, OR (2) ALFISOL, AND GROUP SAMPLES
ACCORDING TO THEIR ORGANIC MATERIAL: % WEIGHT

CLASS 1 TO 6 : NP2 = 255

CLSI : .11% .GE. OM .LE. 1.5%

CLS2 : 1.5% .GT. OM .LE. 2.0%

CLS3 : 2.0% .GT. ON/ .LE. 2.5%

CLS4 : 2.5% .GT. O1'4.LE. 3.5%

CLS5 : 3.5% .GT. OM .LE. 5.0%

: # 1 -> # 51

: # 52 -> # 104

: # 105 -> # 138

: # 139 -> # 183

: # 184 -> # 222

CLS6 : 5.0% .GT. OM .LE. 10.12% : # 223 -> # 255

DATA NST/51, 54, 33, 45, 39, 33/

PCF00810

PCF00820

PCF00830

PCF00840

PCF00850

PCF00860

PCF00870

PCF00880

PCF00890

PCF00900

PCF00910

PCF00920

PCF00930

PCF00940

DATA 'S2A' : ANOTHER TEST GROUPED BY THE SAME OM RANGES AS 'OM2' PCF00950

OM PERCENTAGE : 0, I; 1,2; 2,3; 3,4; 4,6; 6 AND ABOVE PCF00960

PCF00970

DATA NST/26,78,64,32,55/ PCF00980

PCF00990

PCF01000

PCF01010

C
C

C

C

THE FOLLOWING DATA 'NST' IS USED FOR 'OM2' DATA SET
ACCORDING TO THEIR ORGANIC MATERIAL: % WEIGHT

CLASS 1 TO 6 : NP2 = 514

CLSI : .08% .GE. OM .LE. 1.0% : # 1 -> # 82

PCF01020

PCF01030

PCF01040

PCF01Q50
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C
C
C
C
C

C
C
C
C
C
C
C
C

CLS2 : 1.0% .GT. OM .LE. 2.0% : # 83 -> # 217
CLS3 : 2.0% .GT. OM .LE. 3.0% : # 218 -> # 337

CLS4 : 3.0% .GT. OM .LE. 4.0% : # 338 -> # 391

CLS5 : 4.0% .GT. OM .LE. 6.0% : # 392 -> # 450

CLS6 : 6.0% .GT. OM .LE. 84.79% : # 451 -> # 514

DATA NST/82,135,120, 54, 59, 64/

DATA NST/82,135,120, 54,123/

DATA NST/44, 31,18, 23, 24, 51, 37, 27/

DATA NST/83, 57, 94, 31,37, 59,103, 26, 24/

DATA NST/103, 26, 24/

PCF01060

PCF01070
PCF01080

PCF01090

PCF01100

PCF01110
PCF01120

PCF01130

PCF01140
PCF01150

PCF01160

PCF01170
PCF01180

C

C

C

C

C

C

C

C

C

C

C

C

C

THE FOLLOWING DATA 'NST' IS USED FOR SOIL IRON OXIDE 'IO' DATA SETPCF01190

ACCORDING TO THEIR FE203 % WEIGHT

CLASS 1 TO 6 : NP2 = 467

CLSI : .02% .GE. FE203 .LE. 0.4%

CLS2 : 0.4% .GT. FE203 .LE. 0.6%

CLS3 : 0.6% .GT. FE203 .LE. 0.8%

CLS4 : 0.8% .GT. FE203 .LE. 1.2%

CLS5 : 1.2% .GT. FE203 .LE. 1.6%

: # 1 -> # 102

: # 103 -> # 175

: # 176 -> # 244

: # 245 -> # 349

: # 350 -> # 401

CLS6 : 1.6% .GT. FE203 .LE. 25.60% : # 402 -> # 467

DATA NST/102, 73, 69,105, 52, 66/

PCF01200

PCF01210

PCF01220

PCF01230

PCF01240

PCF01250

PCF01260

PCF01270

PCF01280

PCF01290
PCF01300

PCF01310

C

C

C

C

C

C

C

THE FOLLOWING DATA 'NST' IS USED FOR SOIL TEXTURE 'ST' DATA SET

ACCORDING TO THEIR SAND-SILT-CLAY % CONTENT

CLASS 1 TO 6 : NP2 = 483; DETAILS : SEE FILE (S5L.DATA.CI)

DATA NST/40, 63, 76, 93, 68,143/

PCF01320

PCF01330

PCF01340

PCF01350

PCF01360

PCF01370

PCF01380

THE FOLLOWING DATA 'NST' IS USED FOR S.D. VEGETATION DATA

DATA NST/225, 61, 292, 469, 82,182, 63,103, 39, 39,217, 51,

+393,441,80,88, 88,41,32,26, 118,43,121,44, 45,102,66,89,

+78,53,147,39, 24,42,119,69, 76,96,107,154, 28,19/

PCF01390

PCF01400

PCF01410

PCF01420

PCF01430

PCF01440

PCF01450

THE FOLLOWING DATA 'NST' IS USED FOR IOWA VEGETATION DATA

DATA NST/514,41, 517,36,32, 621,517,45, 610,485,21,

+437,377, 22, 190,172, 25, 650,568, 42, 435,417, 44, 393,267/

PCF01460

PCF01470

PCF01480
PCF01490

PCF01500

PCF01510

!I = TRANSFORMED DATA; 12 = CLASS STATISCTICS; 13 = PC

OPEN (ii)

OPEN (12)

OPEN (I3 )
REWIND ii

REWIND 12

REWIND 13

NX2=0

DO 1 I=I,NCLS

PCF01520

PCF01530

PCF01540
PCF01550

PCF01560

PCF01570

PCF01580

PCF01590

PCF01600

PCF01610

PCF01620
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C

C

C

C

C

C

i NX2=NX2+NST (I)

IF(IRES.EQ.0)GO TO 3

DO 2 I=I,NCLS

NXI=NST (I)

2 AP (I) =FLOAT (NXl)/FLOAT (NX2)

GOTO 5

3 DO 4 I=I,NCLS

4 AP (I) =i. 0/FLOAT (NCLS)

5 IK=MOD (NCLS, 6)

SET THE INPUT&OUTPUT DO LOOP PARAMETERS

IM=6 * (NCLS/6) +I

IKI=MOD (NCLS, 3)

IMI=3* (NCLS/3) +I

IK2=MOD (NCLS, 15)

IM2=15" (NCLS/15) +i

ILPI=NCLS/6

IF (ILPI .EQ. 0) ILPI=I

ILP 2=NCLS / 3

IF (ILP2. EQ. 0) ILP2=I

ILP3=NCLS/I 5

IF (ILP3. EQ. 0) ILP3=I

IF (IRES. EQ. 0 )NSAMP=NSMAX

DO 550 ISET=NSET,MSET,NDSET

IF(IRES. EQ. I) CALL RDATA (ISET, RVEC, NSMAX, NTERMC, NCLS, NST)

READ IN CLASS STATISTICS

DO 500 LTERM=I,NTERM

KTERM=LTERM* (LTERM+I)/2

DO 30 ITERM=I,LTERM

IF(NCLS.LT.6)GO TO 20

DO I0 IL=I, ILPI

i0 READ (12, _) (XMT (ITERM, JCLS), JCLS=I+ (IL-I) *6, IL*6)

IF(IK.EQ.0)GO TO 30

20 READ (12, *) (XMT (ITERM, JCLS), JCLS=IM, NCLS)

30 CONTINUE

DO 60 ITERM=I,KTERM

IF (NCLS.LT. 6) GO TO 50

DO 40 IL=I,ILPI

40 READ (12, *) (VCVT (ITERM, JCLS), JCLS=I+ (IL-I) *6, IL*6)

IF(IK.EQ.0)GO TO 60

50 READ (12, *) (VCVT (ITERM, JCLS), JCLS=IM, NCLS)

60 CONTINUE

IF(NCLS.LT.6)GO TO 80

DO 70 IL=I,ILPI

70 READ (12,*) (CT (ICLS), ICLS=I+ (IL-i)*6, IL*6)

IF(IK.EQ.0)GO TO 90

80 READ (12, *) (CT (ICLS), ICLS=IM, NCLS)

90 DO 120 ITERM=I,KTERM

IF(NCLS.LT.6)GO TO Ii0

DO I00 IL=I, ILPI

i00 READ (12, *) (VCVIT (ITERM, JCLS), JCLS=I+ (IL-I) *6, IL*6)

IF(IK.EQ.0)GO TO 120

Ii0 READ (12, *) (VCVIT (ITERM, JCLS), JCLS=IM,NCLS)

120 CONTINUE

PCF01630

PCF01640

PCF01650
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PCF01670

PCF01680

PCF01690

PCF01700

PCF01710

PCF01720

PCF01730

PCF01740

PCF01750

PCF01760

PCF01770

PCF01780

PCF01790

PCF01800

PCF01810

PCF01820

PCF01830

PCF01840

PCF01850

PCF01860

PCF01870

PCF01880

PCF01890

PCF01900

PCF01910

PCF01920

PCF01930

PCF01940

PCF01950

PCF01960

PCF01970

PCF01980

PCF01990

PCF02000

PCF02010

PCF02020

PCF02030

PCF02040

PCF02050

PCF02060

PCF02070

PCF02080

PCF02090

PCF02100

PCF02110

PCF02120

PCF02130

PCF02140

PCF02150

PCF02160

PCF02170

PCF02180

PCF02190
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C

C

C

IF(IFIND.EQ.I)GO TO 125

IF (LTERM.NE.NTERM) GO TO 500

IF(IFIND.EQ.0)GO TO 128

FIND THE PC RESULTS FOR EVERY DTERM INCREMENT

125 NXI=LTERM+ (NDTRM-I)

NX2=MOD (NXl, NDTRM)

C PRINT*, NXI, NX2

IF(NX2.NE.0)GO TO 500

128 DO 170 JCLS=I,NCLS

DO 130 I=I,KTERM

130 VCV (I) =VCVT (I, JCLS)

CALL UGETIO (IOPT, NIN, NOUT)

C CALL USWSM (' THE MATRIX IS ',15,VCV, LTERM, I)

C NOTE : WK(1) MUST BE 0.0 EVERY TIME TO INITIALIZE '
C NOTE : VCV WILL BE CHANGED AFTER ' GGNSM _

IF (IRES. EQ. I) NSAMP=NST (JCLS)

IF (IRES .EQ. I)GO TO 145

DO 140 I=I,NTERM

140 WK (I) =0.0
DSEED=5. DO

145

GGNSM '

GENERATE GAUSSIAN SAMPLES ACCORDING TO THE CLASS STATISTICS

C
C
C

C

C

C

C
C
C
C
C

CALL GGNSM (DSEED, NSAMP, LTERM, VCV, NSMAX, VEC, WK, IER)

DO 155 I=I,NSAMP

DO 155 J=I,LTERM

IF(IRES.EQ.I)GO TO 150

VEC (I,J) =VEC (I, J) +XMT (J, JCLS)

STORE THE SAMPLES INTO ARRAY 'TVEC'

TVEC (I,J, JCLS) =VEC (I, J)
GO TO 155

150 TVEC (I, J, JCLS) =RVEC (I,J, JCLS)

VEC (I, J)=RVEC (I, J, JCLS)

PRINT*, JCLS, I, J, TVEC (I, J,JCLS)
155 CONTINUE

IF(ICKMV.EQ.0)GO TO 170

160

170

CHECK THE MEAN VECTOR AND COV. MATRIX OF THE GENERATED SAMPLES

THE MATRIX 'VEC' WILL BE CHANGED AFTER ' BECOVM '

DO 160 I=I,NTERM

TX (I)=0.0

NBR (1 )=LTERM

NBR (2 )=NSAMP
NBR (3) =NSAMP

IF (LTERM. GT. i) GO TO 600

CALL BECOVM (VEC, NSMAX, NBR, TX, XMCK, VCVCK, IER)

SEND THE CHECKING RESULTS TO THE SCREEN IF NEEDED

CALL USWFV(' THE VECTOR IS

CALL USWSM(' THE MATRIX IS
CONTINUE

',15, XMCK, LTERM, I, i)

',15, VCVCK, LTERM, i)
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C

C
C

C

C

C

C

C
C
C
C

C
C
C

C
C
C

C
C
C

START CLASSIFICATION JOB FOR EACH CLASS SAMPLES

DO 230 JCLS=I,NCLS

IF (IRES. EQ. 1 )NSAMP=NST (JCLS)

PRINT*, LTERM, JCLS, NSAMP

DO 230 ISAMP=I,NSAMP
DO 180 J=I,LTERM

180 Y (J)=TVEC (ISAMP, J, JCLS)

DO 220 KCLS=I,NCLS
THE FOLLOWING IS NEEDED SINCE X HAS BEEN CHANGED FOR

DO 190 I=I,LTERM

190 X (I)=Y (I)

DO 200 I=I,KTERM

200 VCVI (I) =VCVIT (I, KCLS)

CALL VCVTSF (VCVI, LTERM, VCVIF, NTERM)

DO 210 I=I,LTERM

210 XM (I)=XMT (I, KCLS)
CALL SAXPY (LTERM, -i. ,XM, I,X, I)

CALL VMULFM (X,VCVIF, LTERM, 1,LTERM, NTERM, NTERM, T1,1, IER)

CALL VMULFF (TI, X, I, LTERM, i, i,NTERM, T2, i, IER)

T3=EXP (-0.5"T2)

220 PX (KCLS) =AP (KCLS) *CT (KCLS) *T3

230

240

PERFORM M.L. DECISION RULE

CALL VABMXF (PX (i) ,NCLS, I, IMAX, BIG)

NPC (JCLS, IMAX, LTERM) =NPC (JCLS, IMAX, LTERM) +i

CALL VABSMF (PX,NCLS, i,DEN)

Q=BIG/DEN
WRITE (13, *) JCLS, ISAMP, IMAX, NPC (JCLS, IMAX, LTERM)

WRITE (13, *) (PX (I), I=l, NCLS), IMAX, BIG
CONTINUE

FIND PROBABILITY OF CORRECT CLASSIFICATION PC FROM NPC

NCI=0

NC2=0

DO 240 I=I,NCLS

IF (IRES. EQ. 0)NST (I)=NSMAX

PR (I,LTERM) = (FLOAT (NPC (I, I, LTERM) ))/FLOAT {NST (I))

NCI=NCI+NPC (I, I,LTERM)

NC2=NC2+NST (I)

IF (IRES. EQ. 0) NC2=NSMAX*NCLS

PC (LTERM) = (FLOAT (NCI))/FLOAT (NC2)

IF (NCLS.LT. 3)GO TO 260

SEND THE RESULTS TO THE SCREEN

DO 250 IL=I, ILP2

250 WRITE (*, *) ISET, LTERM, (PR(I, LTERM), I=l+ (IL-I) *3, IL*3)

IF(IKI.EQ.0)GO TO 270

260 WRITE (*, *) ISET, LTERM, (PR (I,LTERM), I=IMI, NCLS)

270 PRINT*, ISET, LTERM, PC (LTERM)

SEND THE RESULTS TO THE PC FILE

EVERY KCLS!

PCF02770

PCF02780

PCF02790

PCF02800

PCF02810

PCF02820
PCF02830

PCF02840

PCF02850
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PCF02870
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PCF03240
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28O

290

300

301

C

C---<

C

C

C

510

55O

C

C

C

C 600

WRITE(13,*)' LTERM = ',LTERM

IF(NCLS.LT.6)GO TO 290

DO 280 IL=I,ILPI

WRITE (13,301) (PR (I,LTERM), I=l+ (IL-I) *6, IL*6)

IF (IK. EQ. 0)GO TO 300

WRITE (13,301) (PR (I,LTERM), I=IM, NCLS)

WRITE (13,301) PC (LTERM)

FORMAT (6FI 3.5 )

RESET ALL RELATED VARIABLES >......

THE FOLLOWING ZEROING PROCEDURES ARE 'ABSOLUTELY'

THIS IS DONE FOR EVERY " LTERM = i, NTERM "

NEEDED!!

DO 310 K=I,NCLS

DO 310 I=I,NSMAX

DO 310 J=I,NTERM

310 TVEC (I, J, K) =0.0

DO 320 I=I,NCLS

DO 320 J=I,NTERM

QP (I, J) =0.0

320 PR(I, J)=0.0

DO 330 I=I,NTERM

330 PC (I)=0.0

IF(NCLS.LT.15) GO TO 360

SEND THE FINAL CLASSIFICATION MATRIX NPC TO THE PC FILE

DO 350 J=I,ILP3

DO 340 I=I,NCLS

340 WRITE (13,341) I, (NPC (I,K, LTERM), K=I+ (J-l) "15, J*15)

341 FORMAT (I3, 2X, 1515)

WRITE (13,342) XCI

342 FORMAT (A2)

350 CONTINUE

IF(IK2.EQ.0)GO TO 500

360 DO 370 I=I,NCLS

370 WRITE (13,341) I, (NPC (I,K, LTERM) ,K=IM2, NCLS)
500 CONTINUE

DO 510 I=I,NCLS

DO 510 J=I,NCLS

DO 510 K=I,NTERM

NPC (I, J,K)=0
CONTINUE

THE FOLLOWING STATEMENT IS USED FOR INTERNAL CHECKING

STOP

STOP

END

SUBROUTINE RDATA (LSET, RVEC, NSMAX, NTERMC, NCLS, NST)

REAL RVEC (NSMAX, NTERMC, NCLS)

INTEGER NST (NCLS)

IKX=MOD (NTERMC, 5)

IMX=5* (NTERMC/5) +i
ILPX=NTERMC/5

IF (ILPX. EQ. 0) ILPX=I

IFILEI=II+ (LSET-I) *i0
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10

20

30

40

DO 40 K=I,NCLS

NI=NST (K)

PRINT*,'KCLS -- ',K,'; NSAMP = ',NI

DO 30 I=I,NI

IF(NTERMC.LT.5)GO TO 20

DO i0 JI=I,ILPX
READ (IFILEI, *) (RVEC (I,J, K), J=l+ (Jl-l) *5, Jl* 5)

IF(IKX.EQ.0)GO TO 30

READ (IFILEI, *) (RVEC (I,J, K), J=IMX, NTERMC)

CONTINUE

CONTINUE

RETURN
END
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